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a b s t r a c t

ASIC and ENaC are co-expressed in various cell types, and there is evidence for a close association be-
tween them. Here, we used atomic force microscopy (AFM) to determine whether ASIC1a and ENaC
subunits are able to form cross-clade hybrid ion channels. ASIC1a and ENaC could be co-isolated from
detergent extracts of tsA 201 cells co-expressing the two subunits. Isolated proteins were incubated with
antibodies against ENaC and Fab fragments against ASIC1a. AFM imaging revealed proteins that were
decorated by both an antibody and a Fab fragment with an angle of ~120� between them, indicating the
formation of ASIC1a/ENaC heterotrimers.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

The ENaC/degenerin superfamily of amiloride-sensitive Naþ

channels encompasses >60 members [1], and includes the acid-
sensing ion channel (ASIC) and the epithelial Naþ channel (ENaC).
ASICs are proton-gated cation channels with a trimeric subunit
arrangement [2]. They are abundant in the central and peripheral
nervous systems, where they are involved inmechanosensation [3],
nociception [4], memory and learning [5], as well as neurodegen-
erative disorders, such as ischemic stroke, epilepsy and Parkinson's
disease [6]. They have also been detected in non-neural tissues,
such as cancer cells [7], intestinal epithelial cells [8] and smooth
muscle cells [9,10]. Subunits encoded by the four ASIC genes may
form homo- and heterotrimers with distinct acid-activated cur-
rents [11,12]. ASICs are generally less sensitive to amiloride inhi-
bition than ENaC [13]. The latter is a heterotrimer usually composed
of a, b and g subunits [14], and is constitutively active [1]. ENaCwas
initially identified in the kidney collecting duct [1], where it gov-
erns the rate of Naþ absorption and plays a critical role in the
maintenance of body Naþ balance. It has since been detected in
IC, acid-sensing ion channel;
m channel; FITC, fluorescein
yonic kidney; VSMC, vascular

son).
many other tissues, including colonic and respiratory epithelial
cells, sweat and salivary duct cells, taste cells, endothelial cells,
vascular smooth muscle, brain and heart [15]. Further, it is now
known that d-ENaC may replace a-ENaC in a tissue-dependent and
disease-related manner [16,17]. Consistent with its expression
pattern, dysfunction of ENaC plays a pivotal role in salt-sensitive
hypertension, cystic fibrosis and chronic airway disease [18e20].

Based on the sequence homology between ASIC and ENaC, their
propensity to form heteromeric channels, and their near-
ubiquitous expression, the formation of cross-clade channels was
proposed. Recent findings, using experimental approaches such as
co-immunoprecipitation, F€orster resonance energy transfer and
total internal reflection microscopy, support the suggestion that
channels can be formed through an interaction between ENaC and
ASIC [21e23]. Interestingly, amiloride-sensitive currents, which do
not conform to the common ENaC fingerprint and can be inhibited
by the specific ASIC blocker psalmotoxin-1, an antagonist of ASIC1a
homomers and ASIC1a/2b heteromers [24], have been detected in
Xenopus oocytes exogenously expressing ASIC and ENaC subunits
[21], and in glioblastomas, where a direct interaction between a/g-
ENaC and ASIC1 was observed [22,23,25]. Moreover, this conduc-
tance was not present in non-cancerous astrocytes [7]. Although
these results are consistent with the formation of cross-clade
hybrid channels, structural evidence for the existence of such
channels is still lacking. Here, we used atomic force microscopy
(AFM) [14] to determine whether ASIC and ENaC subunits are
indeed able to form a heteromultimeric ion channel.
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2. Materials and methods

2.1. Constructs

cDNAs for human WT a-, b-, and g-ENaC, each bearing an N-
terminal hemagglutinin (HA) epitope tag and a C-terminal V5 tag,
in the pcDNA3.1 vector have been described previously [14,16]. A C-
terminal Myc epitope tag was added to a human ASIC1a construct,
also in pcDNA3.1.
2.2. Expression and functional analysis of epitope-tagged ASIC1a

Chinese hamster ovary (CHO) cells were grown at 37 �C in Ham's
F-12 nutrient mixture (Life Technologies), supplemented with 10%
(v/v) fetal bovine serum (Sigma),100 U/ml penicillin, and 100 mg/ml
streptomycin, in 5% (v/v) CO2/air. Cells growing on 35-mm culture
dishes coated with 100 mg/ml poly-L-lysine (Sigma) were trans-
fected with a mixture of DNA encoding ASIC1a (0.9 mg) and EGFP
(0.09 mg) using Lipofectamine LTX (Life Technologies). (The EGFP
was subsequently used to identify transfected cells).

Whole-cell patch-clamp recordings from CHO cells were per-
formed at room temperature. The intracellular solution contained
(in mM): 110 KCl, 10 NaCl, 1 MgCl2, 1 EGTA, 10 HEPES, 2 Na2ATP, 0.5
Na2GTP inMilliQ water; pHwas 7.3, and osmolarity was adjusted to
310e315 mOsm with sucrose. The extracellular solution contained
(in mM): 140 NaCl, 4 KCl, 2 CaCl2, 1 MgCl2, 10 HEPES, 4 glucose in
MilliQ water; osmolarity was adjusted to 300e310 mOsm with
sucrose, and pH was adjusted as required. Patch pipettes were
pulled from borosilicate glass capillaries (Hilgenberg) using a
Model P-97, Flaming/Brown puller (Sutter Instruments), and had a
resistance of 3e6 MU. Data were acquired using an EPC10 amplifier
(HEKA) and Patchmaster software (HEKA). Whole-cell currents
were recorded at 20 kHz. Pipette and membrane capacitance were
compensated using Patchmaster macros, and series resistance was
compensated by >60%. Currents were evoked using the following
protocol: 5 s pH 7.4, 5 s pH 6.0 and 5 s pH 7.4, with a holding po-
tential of �60 mV.
2.3. Expression and isolation of epitope-tagged protein from
transiently transfected tsA 201 cells

tsA 201 cells, a transformed human embryonic kidney (HEK)
293 cell line stably expressing an SV40 temperature-sensitive T-
antigen, were grown at 37 �C in Dulbecco's modified Eagle's
medium supplemented with 10% (v/v) fetal bovine serum, 100 U/
ml penicillin, and 100 mg/ml streptomycin, in 5% (v/v) CO2/air.
Cells were transiently transfected [14], and incubated for 48 h at
37 �C to allow protein expression, which was confirmed using
immunofluorescence analysis of small-scale cultures. Cells were
fixed, permeabilized and incubated with appropriate antibodies.
For single transfections, primary antibodies were mouse mono-
clonal anti-HA (Covance), mouse monoclonal anti-V5 (Life Tech-
nologies) and mouse monoclonal anti-Myc (Life Technologies),
followed by a fluorescein isothiocyanate- (FITC)-conjugated goat
anti-mouse secondary (Sigma). For co-transfections, primary an-
tibodies were rabbit polyclonal anti-HA (Sigma), and mouse
monoclonal anti-Myc, and secondary antibodies were FITC-
conjugated goat anti-rabbit (Sigma) and Cy3-conjugated goat
anti-mouse (Sigma). Samples were imaged by confocal laser
scanning microscopy.

Protein isolation was carried out as described previously [14],
using anti-HA immunoaffinity chromatography to capture the HA
epitope tag on the ENaC constructs. Samples were analyzed by SDS-
PAGE, followed by immunoblotting.
2.4. AFM imaging

Isolated proteins were incubated overnight with various com-
binations of the following antibodies and Fab-fragments: mouse
monoclonal anti-V5 (Life Technologies), mouse monoclonal anti-
FLAG (Sigma), Fab-fragment of mouse monoclonal anti-Myc (Life
Technologies), Fab fragment of mouse monoclonal anti-His (Life
Technologies). Fab-fragments were freshly generated using the
specified antibodies and a Fab Micro Preparation Kit (Thermo Sci-
entific) according to the manufacturer's protocol.

AFM imaging was carried out as described previously [14], using
a Bruker Digital Instruments Multimode atomic force microscope
controlled by a Nanoscope IIIa controller. Samples were imaged in
air (tapping mode), using silicon cantilevers with a drive frequency
of ~300 kHz and a specified spring constant of 40 N/m (Olympus).
The applied imaging force was kept as low as possible (As/A0
~0.85).

2.5. AFM image analysis

Particle heights and diameters were measured manually using
the Nanoscope V5.31 software and used to calculate molecular
volumes according to the equation

Vm ¼ ðph=6Þ
�
3r2 þ h2

�
(1)

where h is the particle height and r is the radius [26]. This equation
assumes that the immobilized particle adopts the form of a
spherical cap. The molecular volume of a protein, based on its
molecular mass, was calculated using the equation

Vc ¼ ðM0=N0ÞðV1 þ dV2Þ (2)

where M0 is the molecular mass, N0 is Avogadro's number, V1 and
V2 are the partial specific volumes of particle (0.74 cm3/g) and
water (1 cm3/g), respectively, and d is the extent of protein hy-
dration (taken as 0.4 g water/g protein).

To be accepted as bound antibodies or Fab fragments, peripheral
particles needed to have a molecular volume between
150e330 nm3 and 30e115 nm3, respectively. The ranges were
applied to minimize confusion between antibodies and Fab frag-
ments, with respective molecular volumes of ~285 nm3 and
~95 nm3. The height of the lowest point between the two particles
needed to be greater than 0.3 nm for the peripheral particle to be
considered bound. Additionally, any particle was rejected if its
length was greater than twice its width. To be considered a double
binding event, all particles and both binding events needed to meet
the above criteria.

2.6. Statistical analysis

Histograms were drawn with bin widths chosen according to
Scott's equation:

Bin width ¼ 3:5s
.
n1=3 (3)

where s is an estimate of the standard deviation and n is the sample
size [27].When Gaussian curves were fitted to the data, the number
of curves was chosen so as to maximize the r2 value while giving
significantly different means using Welch's t-test for unequal
sample sizes and unequal variances [28]. Co-immunoprecipitation
efficiency was calculated by densitometric analysis of the immu-
noblot bands using ImageJ software (NIH), taking dilution factors
into consideration.
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3. Results

We showed previously that addition of HA and V5 tags onto the
a, b and g ENaC subunits does not affect either single-channel
conductance or ion selectivity, compared with wild type ENaC
[14]. To test the activity of theMyc-tagged human ASIC1a construct,
it was expressed by transient transfection of CHO cells, and chal-
lenged by exposure to pH 6.0. A robust, rapidly inactivating inward
current was detected (Fig. 1A), similar to that mediated by endog-
enous ASIC1a channels in HEK 293 cells [29], confirming the ability
of the epitope-tagged subunit to generate acid-sensing channels.
Fig. 1. Expression of ASIC1a and ENaC, and immunoisolation from transfected cells. (A) Inw
human ASIC1a. Similar responses were recorded in three separate cells; t for inactivation ¼ 3
tagged a-ENaC or Myc-tagged ASIC1a. Cells were fixed, permeabilized and subjected to imm
square. (C) Cells were co-transfected with HA/V5-tagged a-ENaC and Myc-tagged ASIC1a and
ASIC1a in samples isolated from co-transfected cells by anti-HA affinity chromatography.
Immunoreactive bands were detected using horseradish peroxidase-conjugated goat anti-m
indicate molecular mass markers (kDa); arrows indicate a-ENaC and ASIC1a bands in the s
orescence detection of HA/V5-tagged b-, g- and d-ENaC in singly-transfected cells. (F) Immu
samples isolated from co-transfected cells by anti-HA affinity chromatography. (For interpre
version of this article.)
Of the four ENaC subunits, a, b, g and d, we chose to work
initially with a-ENaC, because the a subunit forms functional
homomeric channels, which b- and g-ENaC do not [30]. The
d subunit probably also forms functional homomeric channels [16],
but little is known about its physiological role. tsA 201 cells were
singly transfected with DNA encoding either HA/V5-tagged a-ENaC
or Myc-tagged ASIC1a, and protein expression was confirmed by
immunofluorescence, using anti-V5, anti-HA and anti-Myc anti-
bodies. As judged by the fluorescent staining pattern and com-
parison with the brightfield images, the tagged-subunits were
localized predominantly in the endoplasmic reticulum, and
ard current evoked by a pH 6.0 solution (red bar) in a CHO cell exogenously expressing
52 ± 62 msec. (B) tsA 201 cells were transiently transfected with DNA encoding HA/V5-
unofluorescence (left panels) and brightfield (right panels) imaging. Images are 150 mm
subjected to immunofluorescence imaging. (D) Detection of HA/V5-tagged a-ENaC and
Samples were analyzed by SDS-PAGE and either immunoblotting or silver staining.
ouse secondary antibodies, with enhanced chemiluminescence detection. Arrowheads
ilver stained gel. ‘T’ and ‘E’ denote total and eluted samples. (E) Anti-HA immunoflu-
noblot detection of HA/V5-tagged b-, g- and d-ENaC along with Myc-tagged ASIC1a in
tation of the references to colour in this figure legend, the reader is referred to the web
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transfection efficiency was 50e60% (Fig. 1B). When cells were co-
transfected with DNA encoding a-ENaC and ASIC1a, co-
expression of the two proteins was seen in 40e50% of transfected
cells (Fig. 1C). After double transfection, cells were solubilized in
buffer containing 1% Triton X-100 and proteins were isolated by
anti-HA immunoaffinity chromatography. Total protein extracts
and isolated proteins were immunoblotted. Major bands in the
purified fractions were detected at ~95/80 kDa (anti-V5 and anti-
HA) and ~75 kDa (anti-Myc), consistent with the expected sizes
of tagged a-ENaC [14] and ASIC1a, respectively (Fig. 1D). The same
bands were seen on the corresponding silver-stained gel, indicating
the purity of the sample. (Note that a-ENaC and ASIC1a could also
be co-isolated by anti-Myc immunoaffinity chromatography; data
not shown). Densitometry of the bands on the anti-HA and anti-
Myc immunoblots revealed that 22 ± 4 (SEM) % (n ¼ 3) of the to-
tal a-ENaC and 11 ± 5% (n ¼ 3) of the total ASIC1a appeared in the
eluate, indicating a 47 ± 12% co-isolation efficiency. This result is
consistent with previous findings [21e23] that a-ENaC and ASIC1a
directly interact.

When cells were singly transfected with DNA encoding b, g and
d subunits, immunofluorescence images were similar to those seen
with a-ENaC (Fig. 1E). Co-isolation efficiencies of ASIC1awith the b,
g and d subunits were 24 ± 9%, 2 ± 2% and 22 ± 10%, respectively
(n¼ 3 in all cases; Fig.1F). Hence, of the four ENaC subunits, a-ENaC
has the strongest interaction with ASIC1a.

When the sample containing co-isolated ASIC1a and a-ENaCwas
imaged by AFM, a heterogeneous distribution of particles was seen
(Fig. 2A). To detect the presence of ASIC1a alongside a-ENaC, we
incubated the isolated proteins with anti-V5 antibodies (Abs) and
anti-Myc Fab-fragments (Fabs). These two ligands are easily
distinguishable by AFMbased on their different sizes (~285 nm3 and
~95 nm3, respectively). Fig. 2B shows AFM images of the Ab/Fab-
Fig. 2. AFM imaging of protein isolated from cells co-expressing HA/V5-tagged a-ENaC and
image. Scale bar, 200 nm; shade-height scale, 0e5 nm. (B) Low-magnification images of prote
singly decorated by Abs or Fabs, respectively; * and # indicate doubly- and triply-decorated
particles decorated singly by either Abs (top panels) or Fabs (bottom panels). Numbers indic
molecular volumes of all decorated particles. The curves indicate the fitted Gaussian functi
decorated particles. We saw particles that were either singly (Ab,
arrowheads; Fab, arrows), doubly (asterisk) or triply decorated (#)
with Abs and/or Fabs. A gallery of individual particles singly deco-
rated with Abs or Fabs is shown in Fig. 2C. A frequency distribution
of volumes of all decorated particles, produced using Eq. (1), had
three peaks, at 452 ± 21 nm3, 1013 ± 113 nm3 and 1651 ± 129 nm3

(Fig. 2D). The lowest peak (peak 1) closely corresponds to the size of
a trimer containing ASIC1a and/or a-ENaC subunits: according to
Eq. (2), ASIC1a and a-ENaC monomers should have molecular vol-
umes of 142 nm3 and 180 nm3, respectively; a heteromeric ASIC1a/
a-ENaC trimer would therefore have a molecular volume between
426 nm3 (ASIC1a trimer) and 540 nm3 (a-ENaC trimer). The larger
volumes in the distribution are approximately twice (peak 2) and
three times (peak 3) the size of a trimer, suggesting that the isolated
proteins assemble not only as trimers but also as dimers and trimers
of trimers, similar to abg-ENaC [14].

A frequency distribution of volumes of doubly-decorated par-
ticles (Fig. 3A) had a major peak at 487 ± 19 nm3, corresponding to
the volume of an ASIC1a/a-ENaC trimer, and a minor peak at
approximately double this volume, 1064 ± 177 nm3, likely repre-
senting dimers of trimers. A volume range of 300e850 nm3 was set
to identify trimer-sized particles. Among these particles, we found
three types of double binding event: Ab/Fab (n ¼ 44), Ab/Ab
(n ¼ 16) and Fab/Fab (n ¼ 31; Table 1). Seven triply-decorated
particles were also seen: six Ab/Fab/Fab and one Ab/Ab/Fab. Gal-
leries of doubly-decorated particles are shown in Fig. 3BeD.
Crucially, Ab/Fab double binding events, which comprise about half
of the total number of double decoration events, indicate the
presence of trimer-sized particles containing both ASIC1a and a-
ENaC subunits.

To check that the double decoration events were genuine, we
carried out three control experiments. As shown in Table 1, the
Myc-tagged ASIC1a by anti-HA affinity chromatography. (A) Low-magnification AFM
in that had been incubated with anti-V5 Abs. Arrowheads and arrows indicate particles
particles, respectively. Scale bar, 200 nm; shade-height scale, 0e5 nm. (C) Galleries of
ate the volume peaks in (D) to which the particles belong. (D) Frequency distribution of
ons. Peaks 1, 2 and 3, and the means of the distributions are indicated.



Fig. 3. Determination of the assembly state of the doubly-decorated particles. (A) Frequency distribution of molecular volumes of multiply-decorated particles. The curves indicate
the fitted Gaussian functions. The means of the distribution are indicated. (BeD) Distributions of angles between an Ab and a Fab (B), two Abs (C) and two Fabs (D) bound to single
ASIC1a/ENaC trimers. In each case, the curve indicates the fitted Gaussian function, and the peak of the distribution is indicated. Galleries of zoomed images of representative
doubly-decorated particles are shown above each angle distribution. Scale bar, 20 nm; shade-height scale, 0e3 nm. (E) Illustration of the Ab/Fab decoration patterns of the two
possible ASIC1a/ENaC heterotrimers.
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frequency of double decoration events was reduced substantially
when isolated protein was incubated with anti-FLAG Ab (control)
plus anti-Myc Fab (positive), anti-V5 Ab (positive) plus anti-His Fab
(control), or anti-FLAG Ab (control) plus anti-His Fab (control).
Hence, the vast majority of double binding events observed with
anti-V5 Ab plus anti-Myc Fab were specific.

A frequency distribution of angles between bound Ab/Fab pairs
had a single peak at 110 ± 3� (n ¼ 58; Fig. 3B), close to the angle of
Table 1
Quantitation of complex formation.

Ab/Fab combination Particles analyzed

Anti-V5 Ab þ Anti-Myc Fab 1744
Anti-FLAG Ab þ Anti-Myc Fab 1454
Anti-V5 Ab þ Anti-His Fab 1384
Anti-FLAG þ Anti-His Fab 1561
120� expected for a trimer. Similarly, the peak angle for Ab/Ab pairs
was 102 ± 3� (n ¼ 17; Fig. 3C), and the peak angle for Fab/Fab pairs
was 129 ± 4� (n ¼ 37; Fig. 3D). The frequency ratio of Fab/Fab and
Ab/Ab pairs is about 2:1, suggesting that the majority of ASIC1a/a-
ENaC channels are composed of two ASIC1a subunits and one a-
ENaC subunit. This deduction is supported by the findings that
triple decoration with Fab/Fab/Ab and Ab/Ab/Fab occurred in a 6:1
ratio (above) and that Fab/Fab double binding events were
Double decoration events

Fab/Ab Ab/Ab Fab/Fab

44 (2.5%) 16 (0.9%) 31 (1.8%)
4 (0.3%) 2 (0.1%) 17 (1.2%)
7 (0.5%) 4 (0.3%) 3 (0.2%)
5 (0.3%) 1 (0.1%) 0 (0.0%)
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relatively common (n ¼ 17) when particles were incubated with
anti-FLAG Ab (control) plus anti-Myc Fab (positive; Table 1). Our
conclusions about the subunit composition of the ASIC1a/a-ENaC
heterotrimer are summarized in the illustrations in Fig. 3E.

4. Discussion

Here we provide, for the first time, direct structural evidence for
the formation of a cross-clade heterotrimeric ion channel fromASIC
and ENaC subunits. This finding raises the possibility that various
cross-clade ASIC/ENaC channels exist, which display either a com-
bination of the individual properties of the two channels or entirely
novel features. The existence of a novel amiloride-sensitive current
in glioblastomas, but not in non-cancerous astrocytes, has been
mentioned above [7]. ASICs and ENaCs have individually been
associated with cell migration and proliferation [9,10,31]; however,
our finding suggests a potential involvement of ASIC1a/ENaC het-
eromeric channels in these processes.

ASIC/ENaC heteromers might also function as mechanosensors.
A mechanosensitive role for ENaC has been proposed in vascular
smooth muscle cells (VSMCs) [32], in which only the b and g sub-
units are expressed. The lack of the conducting a subunit makes it
unlikely that ENaC in VSMCs has the same classic function as in the
kidney. Inhibition or knockdown of ENaC in VSMCs, as well as
knockdown of ASIC, which is equally expressed in these cells,
resulted in a blockade of myogenic constriction [33e35]. These
findings are consistent with the existence of a functional ASIC/ENaC
channel. (Note that both b- and g-ENaC could be co-isolated with
ASIC1a in our study, albeit less efficiently than a-ENaC). Further
evidence indicates that an ASIC/ENaC heteromer may be respon-
sible for mechanosensitivity in mammalian muscle spindles [36].
ASIC and ENaC are also co-expressed in a variety of other tissues
and cell types, including gliomas, glioblastomas and astrocytes
[7,22,23]. We suggest that cross-clade channels are formed in many
cell types and that they participate in processes such as sensory
perception, and pathological conditions such as cystic fibrosis, hy-
pertension and pain. These diseases have so far only been associ-
ated with either one of the ion channels (reviewed in Ref. [37]), and
consequently drug development has involved targeting of the in-
dividual channels. Although complete characterization of channel
functionality and regulation is still needed, the existence of ASIC/
ENaC heteromers increases the repertoire of available phenotypes
and may provide novel therapeutic targets.
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