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Impaired endocytosis may represent an obstacle to gene
therapy in polycystic kidney disease
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Impaired endocytosis may represent an obstacle to gene ther- THE PROXIMAL TUBULE REPRESENTS AN
apy in polycystic kidney disease. IMPORTANT TARGET IN GENE THERAPY

Background. Autosomal-dominant polycystic kidney dis-
OF THE KIDNEYease (ADPKD) is the most common hereditary renal disease

and a frequent cause of chronic renal failure. The cloning of With a prevalence of �1:1000 [1, 2], ADPKD is the
the PKD1 and PKD2 genes, which are mutated in the great most frequent hereditary renal disease in man. Themajority of patients with this disease, opens up the opportunity

course of the disease is slowly progressive, thus leadingfor somatic gene therapy by introduction of the wild-type gene
or cDNA. Several publications have provided evidence, that to chronic renal failure in �50% of the patients at age
many portions of the nephron and the collecting duct can 60 [3–5] and contributing to �5–10% of all cases with
form cysts, including the proximal tubule. Alterations in the end-stage renal disease [6–9]. The cloning of the PKD1proximal tubule may prevent the efficient endocytosis of fil-

[10] and PKD2 [11] genes, which are mutated in far moretered proteins and thus contribute to proteinuria, a frequent
symptom in patients with polycystic kidney disease. At the than 90% of the patients with ADPKD [12, 13], has
same time this may also negatively affect various gene therapy opened up new treatment opportunities. It is now at least
strategies, since endocytosis is important for the uptake of

conceivable that a cDNA encoding the wild-type proteinforeign DNA at least under some circumstances. In the (cy/�)
can be introduced into the kidneys of ADPKD patients,rat, a widely used animal model for ADPKD, cysts almost

exclusively develop from proximal tubules, and we have there- where it may functionally replace the mutated genes.
fore investigated whether proteinuria and defective endocyto- Human ADPKD can affect the collecting duct and
sis also occur in this model.

many portions of the nephron, including the proximalMethods. Proteinuria was demonstrated by direct measure-
ment and by protein gel electrophoresis of urines from 16 tubule [14–18]. A variety of different approaches, which
week-old (cy/�) rats. Endocytosis was investigated by injection have already been tried to carry out renal gene therapy,
of FITC-dextran and immunohistochemical staining with anti-

have indeed resulted in the targeting of proximal tubules.ClC-5 and anti-megalin antibodies.
In the earliest publication the use of a retroviral vectorResults. Similar to the observations made in ADPKD pa-

tients, proteinuria also develops in the (cy/�) rat. Using FITC- has been described [19]. This strategy, however, is severely
labeled dextran as an in vivo tracer for renal tubular endosomal limited because of the fact that retroviruses will only inte-function, we could show that portions of cyst-lining epithelia

grate into the host genome of replicating cells. Underfrom proximal tubules have lost the ability to endocytose, which
is necessary for the reabsorption of albumin and lower-molecu- normal circumstances most of the cells in the kidney are
lar-weight proteins. By immunohistochemistry the expression quiescent, but they can enter the cell cycle after an insult
of other proteins implicated in endocytosis, such as the chloride

[20]. In the study just mentioned this was achieved by thechannel ClC-5 and the albumin receptor megalin, correlated
intraperitoneal injection of folic acid [19], which leads towell with the presence and absence of FITC-dextran in cyst

wall epithelia. pronounced cell death in the proximal tubule. The surviv-
Conclusion. These data indicate that proteinuria and albu- ing cells then leave the G0-phase in order to replace theminuria in the (cy/�) rat model for ADPKD are due to a loss

dead cells, thus making them accessible to retroviral geneof the endocytic machinery in epithelia of proximal tubular
cysts. Such a defect may also reduce the efficacy of certain therapy. It is obvious that retroviruses can only be used
gene therapy protocols. under very specific circumstances, which severely limits

their applicability in the setting of the kidney.
1 Present address: Division of Nephrology, Department of Medicine, In addition to retroviruses, other viruses such as ade-
University of Frankfurt/Main, Frankfurt, Germany.

novirus and adeno-associated virus have attracted a lot of
Key words: ClC-5, megalin, FITC-dextran, albuminuria, proteinuria. attention. Since adenoviruses can also transfer foreign

DNA into non-replicating cells, they are much better suited 2002 by the International Society of Nephrology
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Table 1. Total protein and albumin excretion in the urine
of 16-week-old male (cy/�) and (�/�) rats.

(cy/�) (N�5) (�/�) (N�5) P

Protein excretion [mg/24 h] 50.2�15.9 20.0�5.6 0.004a

Albumin excretion [mg/24 h] 13.1�6.3 3.1�1.3 0.022a

Data are presented as means � standard deviation.
a Statistically significant at p � 0.05

for the kidney. In the first study reported, a recombinant
adenovirus was administered through the renal artery
and the ureter. While the retrograde route resulted in
prominent �-galactosidase activity in the papilla, the in-
jection into the renal artery led to the infection of the
proximal tubules [21]. Similar results were published,
when cadaveric human kidneys were used. Also in this
case, reporter protein activity was predominant in the
epithelium of proximal tubules [22]. The efficiency of
recombinant adenovirus to restore a genetic defect was
finally demonstrated in the case of the aquaporin-1
knockout mouse. The water channel aquaporin-1 is
normally expressed in proximal tubules, descending thin
limbs and vasa recta, where it is important for the trans-
cellular movement of water [23–26]. Its absence in
aquaporin-1 knockout mice severely compromises the
concentrating ability of the kidney [27, 28]. When an
adenovirus encoding aquaporin-1 was injected into the
tail vein of aquaporin-1 knockout mice, a strong expres-
sion of aquaporin-1 was evident in the liver and in the
kidney. In the latter organ staining with an anti-aqua-
porin-1 antibody only resulted in the detection of aqua-
porin-1 in proximal tubules. Moreover, the concentrating
ability of the aquaporin-1 knockout mice was partially
restored [29]. Fig. 1. Location of renal cysts in the (cy/�) rat model of ADPKD.

Histochemical staining of a kidney section from a (cy/�) rat for alkalineOther widely applicable gene therapy protocols use
phosphatase, a marker enzyme of the proximal tubule, leads to thecationic liposomes and cationic polymers. The retro- convenient identification of proximal tubules. On this overview it can

grade injection of DNA/liposome complexes through the be easily seen that most cysts are derived from proximal tubules located
in the cortex. It is likely that the unstained cysts nevertheless haveuretero-pelvic junction can result in the expression of a
originated from proximal tubules, but have lost alkaline phosphatasereporter gene in tubular profiles, possibly proximal tu- in the course of cyst formation. Bar, 400 �m.

bules [30]. Following their promising initial studies, the
same group successfully used liposomes to correct renal

nucleotides represent a very valuable option. Systemic ad-tubular acidosis in a mouse line, in which the gene coding
ministration of oligonucleotides leads to their preferential

for carbonic anhydrase II was inactivated [31]. Using accumulation in the kidney and the liver. At closer inspec-
different liposomes and an access through the renal ar- tion, it turned out that the oligonucleotides were predomi-
tery, however, another group found a rather inefficient nantly taken up by proximal tubules [34–36]. Furthermore,
expression of the reporter protein �-galactosidase in the an antisense strategy also resulted in the downregulation
kidney [32, 33]. A complex between DNA and the cat- of NO-synthase type II [36] and of the sodium phosphate
ionic polymer polyethylenimine (PEI), however, yielded cotransporter [37], which demonstrates that the adminis-
a much higher transfection efficiency, and again the re- tration of antisense oligonucleotides can indeed have func-
porter protein was predominantly detected in the proxi- tional consequences.
mal tubule [32, 33].

The use of viruses, liposomes, and cationic polymers WILL DEFECTIVE ENDOCYTOSIS IN CYST
WALL EPITHELIA HINDER GENE THERAPYusually is aimed to restore or add function, but the intro-
OF POLYCYSTIC KIDNEY DISEASE?duction of an exogenous protein may sometimes be im-

possible or not desirable; rather, the ablation of a certain For all the approaches described above, i.e., adenovirus
[38, 39], adeno-associated virus [40], liposomes [41, 42],protein may be preferrable. In such a case, antisense oligo-
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Fig. 2. Endocytosis of FITC-labeled dextran by non-cystic proximal
tubules. Systemically administered FITC-labeled dextran is readily
taken up by the kidney. At a higher magnification, a punctate pattern of
FITC-dextran labeling can be seen, which represents the newly formed
endosomes in cortical proximal tubules. Bar, 25 �m. Fig. 3. FITC-dextran uptake and ClC-5 protein expression in cyst-

lining epithelial cells. A cyst from a cortical kidney section of a 16
week-old (cy/�) rat injected with FITC-labeled dextran shows a mosaic
distribution of FITC-dextran uptake (a). Immunofluorescence staining
with an antibody against ClC-5 (b) demonstrates that those cells, whichpolyethylenimine [43], and oligonucleotides [44, 45],
do not endocytose FITC-dextran any longer, also do not express ClC-5.

there is at least some evidence that endocytosis plays a The corresponding interference phase-contrast view is shown in c. Bar,
20 �m.role in the uptake of the foreign DNA. Since cystically

transformed proximal tubules may lose their differentia-
tion markers [46], it is of great importance to determine
whether cyst wall epithelial cells derived from proximal

amounts of total protein and albumin in their urine whentubules still endocytose properly.
compared with age-matched (�/�) rats (Table 1). WhenProteinuria has been reported repeatedly in patients
urine samples were analyzed under non-reducing condi-with ADPKD [47–50]. So far, however, it is unclear what
tions on protein gels, we found no evidence for the excre-factors contribute to the increased urinary excretion of
tion of immunoglobulins (data not shown), which arguesproteins. In our analysis of this problem, we have turned
against a glomerular origin of proteinuria and ratherto the (cy/�) rat, a model for ADPKD which closely
points to a tubular defect. This is in agreement with theresembles the human disease [46, 51–55]. Four-month-

old male (cy/�) rats excreted significantly increased origin of cysts in this particular rat model, which are
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derived predominantly from proximal tubules, the neph-
ron segment with the greatest protein reabsorption ca-
pacity (Fig. 1).

Initial support for the hypothesis, that cysts suffer from
an endocytosis defect, was collected by administering
FITC-labeled dextran to (cy/�) rats. As demonstrated
previously [56], FITC-dextran, which serves as an endo-
cytosis marker, was readily taken up by normal proximal
tubules (Fig. 2). We noticed, however, that some cysts
did not accumulate any FITC-dextran or showed only a
patchy reabsorption of FITC-dextran (Figs. 3a and 4a).
In order to gain further evidence for an endocytosis
defect in cyst-lining epithelial cells, we performed immu-
nohistochemistry with antibodies against the chloride
channel ClC-5 and against megalin. Proteins and pep-
tides, which pass the glomerular filtration barrier, are
effectively reabsorbed in proximal tubules. An important
first step in the reabsorption process is the binding of
albumin and other filtered proteins to receptor proteins
such as megalin [57, 58]. Subsequent to the formation
of those complexes, endosomes will form and the pro-
teins will be degraded by lysosomal proteases. The acidi-
fication of the endosomal compartment is achieved
through the action of a V-type H�-ATPase, whereas
the required counterions for the imported H�-ions are
probably provided by the action of the chloride channel
ClC-5 [59, 60]. The crucial role of both megalin and
ClC-5 for the reabsorption of proteins in the proximal
tubule is demonstrated by the inactivation of their re-
spective genes. A null mutation in the gene coding for
megalin leads to low-molecular-weight proteinuria in
mice [61], and patients with mutations in ClC-5 suffer
from Dent’s disease and related syndromes, which are
also characterized by massive low-molecular-weight pro-
teinuria [62, 63]. Both with the anti-ClC-5 (Fig. 3b) and
with the anti-megalin antibody (Fig. 4b), we were able
to detect cyst wall epithelia that did not express the
respective proteins any longer. The loss of megalin and
ClC-5 correlated with the absence of FITC-dextran up-
take (Figs. 3 and 4), thus corroborating the endocytosis
defect in portions of the cysts and offering an explanation
for the proteinuria.

CONCLUSIONS

Polycystic kidney disease presents an important para-
digm in the field of renal gene therapy. The cloning of
the PKD1 [10] and PKD2 [11] genes allows the clear-

tion of FITC-dextran uptake (a). Immunofluorescence staining with an
antibody against megalin (b) demonstrates that those areas, which do

Fig. 4. FITC-dextran uptake and megalin expression in cyst-lining epi- not endocytose FITC-dextran any longer, also do not express megalin.
thelial cells. Two cysts from a cortical kidney section of a 16 week-old The corresponding interference phase-contrast view is shown in c. Bar,
(cy/�) rat injected with FITC-labeled dextran show a mosaic distribu- 25 �m.
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