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How are podocytes affected in nail–patella syndrome?
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Abstract Nail–patella syndrome is an autosomal-dominant
hereditary disease named for dysplastic fingernails and
toenails and hypoplastic or absent kneecaps evident in
patients with the syndrome. Prognosis is determined by the
nephropathy that develops in many such patients. Besides
podocyte foot-process effacement, pathognomonic changes in
the kidney comprise electron-lucent areas and fibrillar
inclusions in the glomerular basement membrane. These
characteristic symptoms are caused by mutations in the gene
encoding the transcription factor LMX1B, a member of the
LIM-homeodomain gene family. Comparable with the
human syndrome, homozygous Lmx1b knockout mice lack
patellae and suffer from severe podocyte damage. In
contrast, however, podocin and the α3 and α4 chains of
collagen IV are absent in the glomeruli of Lmx1b knockout
mice. Further studies with podocyte-specific Lmx1b knock-
out mice have confirmed the importance of LMX1B in
podocytes, as these mice apparently develop foot processes
initially but lose them later on. We therefore conclude that
LMX1B is essential for the development of metanephric
precursor cells into podocytes and possibly also for main-
taining the differentiation status of podocytes. LMX1B can
serve as a model system to elucidate a genetic program in
podocytes.
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For many years, the mesangial cell took the forefront of
glomerular research (see, for example, [1, 2]), but its pedestal
was first slowly shaken by the painstaking morphological
investigations of Wilhelm Kriz (confer [3, 4] for an early and
late review, respectively) and finally abruptly toppled by
irrefutable genetic evidence pointing towards the podocyte as
a crucial cell in the glomerulus [5]. Meanwhile, the podocyte
is firmly rooted in pathogenetic models of glomerular
diseases and it is hard to imagine that it will leave again.
Although mutations in WT1, a gene encoding a transcription
factor of the Cys2His2-zinc finger family, had been found
responsible for the podocytopathies Denys-Drash syndrome
[6], WAGR syndrome [7] and Frasier syndrome [8], the
article by Karl Tryggvason’s group on the identification of
mutations in NPHS1 added another dimension [5]. NPHS1 is
mutated in patients suffering from congenital nephrotic
syndrome of the Finnish type. It codes for nephrin, a
component of the slit diaphragm, and therefore is an essential
part of the glomerular filtration barrier [9–11]. Since then
several other genes have been cloned that when mutated lead
to glomerular disease and which in the kidney are (almost)
specifically expressed in podocytes. They are LMX1B
[12–14], NPHS2, the gene encoding podocin [15]; ACTN4,
the gene encoding α-actinin-4 [16]; CD2AP [17, 18] and
TRPC6 [19, 20]. In the following years, an increasing amount
of evidence has accumulated on the specific role of these
proteins in the podocyte. Nephrin and podocin participate in
the formation of the slit diaphragm complex, α-actinin-4
crosslinks actin filaments in podocytes, and TRPC6 belongs
to a special class of cation channels. Very little, however, is
known about how the podocyte-specific expression of these
genes is achieved. The sparse evidence that has been
published concerns WT1, which binds to sequences in the
promoter regions of the Podxl gene (encoding podocalyxin)
[21] and of the NPHS1/Nphs1gene [22, 23]. Although WT1
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activates the respective reporter constructs, the induction of
the endogenous NPHS1/Nphs1 gene by WT1 was described
by one group [23] but not another [22].

Nail–patella syndrome has been known for many decades
as a hereditary disease and was one of the first genetic
disorders for which linkage was established. In addition to the
obvious limb abnormalities, nephrologic symptoms develop
in ∼40% of these patients over the course of several decades.
On an ultrastructural level, the moth-eaten appearance of the
glomerular basement membrane together with fibrillar depos-
its is considered typical of nail–patella syndrome. In addition,
podocytes lose their foot processes (for references, see [24]).
In 1998, not only were the first mutations in the LMX1B
gene published for patients suffering from nail–patella
syndrome [12–14], but a report also appeared on the first
characterisation of the Lmx1b knock-out mouse [25]. A more
careful analysis of the kidney phenotype in the Lmx1b
knock-out mouse revealed pronounced retardation in the
development of podocytes that did not elaborate foot
processes and slit diaphragms. Consistent with this finding
was the splitting of the glomerular basement membrane and
the reduced number of endothelial fenestrations, because
podocytes synthesise proteins of the glomerular basement
membrane and control differentiation of glomerular endo-
thelial cells [26, 27]. Attractive explanations for these
morphological defects have come from the observations that
the α3 and α4 chains of collagen IV are no longer detected
in the glomerular basement membrane ([28] and personal
observations), that the Nphs2 gene is no longer expressed in
podocytes of homozygous Lmx1b knock-out mice, and that
podocytes in homozygous Lmx1b knock-out mice produce
less vascular endothelial growth factor (VEGF) [26, 27].
Further molecular analysis demonstrated that LMX1B bound
to AT-rich sequences in the first intron of the COL4A4 gene
[28] and in the promoter region of the NPHS2 gene [26, 27].

Although the model that LMX1B activates the expression
of COL4A4 and NPHS2, and that inactivating mutations in
the LMX1B gene secondarily lead to the loss of collagen IV
and podocin and therefore to the characteristic alterations in
nail–patella syndrome patients certainly is an attractive one,
several caveats have to be mentioned as well. Firstly, we
could not demonstrate activation of a reporter construct with
4.4 kbp of the NPHS2 promoter by LMX1B [27], although
another group showed an approximate twofold activation of
the reporter gene controlled by four concatemerised LMX1B
binding sites from the NPHS2 promoter [26]. Secondly, when
we stably transfected a human cervical carcinoma cell line
HeLa cells (which admittedly bears only a very remote
similarity to podocytes) with an LMX1B cDNA, we found no
upregulation of the endogenous NPHS2 gene [27]. Thirdly,
podocin and the α3 and α4 chains of collagen IV were still
present in glomeruli from patients with nail–patella syndrome
[29]. And fourthly, the constitutive podocyte-specific inacti-

vation of Lmx1b in the mouse does not lead to the loss of
podocin or collagen IV [30]. What do these apparently
discrepant results mean? If LMX1B already acts at a very
early stage of podocyte development, specifically before the
NPHS2, COL4A3 and COL4A4 genes are turned on (by other
transcription factors?), the podocyte will just not have reached
an advanced enough stage of development to produce
podocin and collagen IV. In other words, LMX1B may rather
exert a permissive influence and, for example, initiate the
spreading of the foot processes upon which podocin would be
produced and slit diaphragms be elaborated.

The constitutive podocyte-specific inactivation of Lmx1b
represents a more comparable model for human nephrop-
athy, but the mice only survive for ∼2 weeks after birth
[30], again limiting their usefulness. In those animals,
podocin and collagen IV α3/α4 are still present, and it
appears as if foot processes and slit diaphragms are first
elaborated and then lost secondarily (Fig. 1). Does LMX1B
therefore play a role not only for the initial development of

Fig. 1 a–f Ultrastructural and immunohistochemical characterisation
of mice with podocyte-specific inactivation of Lmx1b. In 11-day-old
mice, the podocyte-specific inactivation of Lmx1b leads to the loss of
foot processes and to a thickened glomerular basement membrane
(arrows in b). However, despite the inactivation of Lmx1b, podocin
and the α4 chain of collagen IV are still produced (d, f). +/lox control
mice with one wild-type and one floxed Lmx1b allele; lox/lox mice
with two floxed Lmx1b alleles; Cre presence of the Cre transgene
under control of the human NPHS2 promoter. Bars: 5 μm (a, b),
20 μm (c–f). With permission from [30]
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podocytes but also in the maintenance of their differentia-
tion status? Clearly, more elaborate mouse models with an
inducible inactivation of Lmx1b in adult animals are needed
to answer this question. Such mice will also have the
additional advantage of permitting the isolation of sufficient
amounts of glomeruli, which can be used for DNA
microarrays and identification of LMX1B target genes.
Mouse genetics has already provided us with the verifica-
tion of LDB1 as an interaction partner of LMX1B [30], and
it may in the end help us to identify a genetic hierarchy
acting in podocytes by telling us what factors control the
expression of LMX1B in podocytes, what other proteins
LMX1B interacts with and what genes are regulated by
LMX1B in this peculiar cell type.
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