
Maximum Entropy Reconstruction of
Velocity Map imaging Data

Program Manual

Bernhard Dick

Institut für Physikalische und Theoretische Chemie, Universität
Regensburg, 93053 Regensburg, Germany. E-mail:

bernhard.dick@chemie.uni-regensburg.de

April 11, 2022

Abstract

Three programs are provided that perform the equivalent to an Abel inversion on
data obtained from an ion imaging experiment, or angularly resolved photoelectron
spectroscopy. In contrast to other methods used for Abel inversion these programs
never apply an inversion or smoothing to the data. Instead, they iteratively find
the map which is the most likely cause for the observed data using the likelihood
criterion to obtain a best fit. From the large space of solutions that are compatible
with the data within the likelihood criterion, the entropy criterion selects the solu-
tion that minimizes the information content in this map. Thus all other solutions
contain information for which there is no evidence in the data.

Three implementations are available: Maximum Entropy Velocity Image Recon-
struction (MEVIR) obtains a two-dimensional slice through the velocity distribution
and can be compared directly to Abel inversion. Maximum Entropy Velocity Legen-
dre Reconstruction (MEVELER) finds one-dimensional distribution functions Ql(v) in
an expansion of the velocity distribution in Legendre polynomials Pl(cos θ) for the
angular dependence. Both MEVIR and MEVELER use the correct likelihood criterion
for data sampled from a Poissonian distribution. Maximum Entropy Legendre Ex-
pansion Image Reconstruction (MELEXIR) solves for the same functions as MEVELER,
but uses a Legendre projection of the data as input. Hence the Gaussian likelihood
criterion is used. MELEXIR is much faster than MEVELER, has much smaller memory
requirements, and solves for all Legendre orders L ≤ 6, in particular also odd orders
which are not available with MEVIR or MEVELER.

1

Contents

1 What is in the program package? 3

2 Quick start 3

3 The algorithms 6
3.1 MEVIR: maximum entropy velocity image reconstruction 7
3.2 MEVELER: maximum entropy velocity Legendre reconstruction 10
3.3 MELEXIR: Maximum Entropy Legendre Expansion Image Reconstruction. 11

4 Preparing the data for MaxEnt analysis 12
4.1 Mapping detector to matrix . 12
4.2 Centering the data matrix, contracting of quadrants 13

5 Input for program PrepareVMI 15

6 Input for MaxEnt programs 17

7 Program Output 19
7.1 MEVIR . 19
7.2 MEVELER . 20
7.3 MELEXIR . 20

8 The library MaxEntAbel.dll 21
8.1 SetOptions . 21
8.2 Image2Data . 21
8.3 MevirDLL . 23
8.4 MevelerDLL . 24
8.5 MelexirDLL . 25
8.6 CheckOption . 26
8.7 SetDefaultOptions . 26

9 citation 27

2

1 What is in the program package?

Unpacking the zipped archive file creates the following directories:

bin contains four programs Mevir.exe Meveler.exe, Melexir.exe, and PrepareVMI.exe.
The first three perform the corresponding analysis of a velocity map. PrepareVMI.exe
takes a raw velocity map image and transforms it into the input format required by
the various maximum entropy programs. I.e., for MEVIR and Meveler a quadrant
matrix is formed, for MELEXIR the Legendre projection is done. All these four pro-
grams access MaxEntAbel.dll which must be in the search path when the programs
are called.

binS contains the same programs, but statically linked to the library libMaxEntAbel.lib.

dll contains the MaxEntAbel.dll and the MaxEntAbel.lib which is required if one wants
to use this DLL in ones own programs.

lib contains the library libMaxEntAbel.lib. It contains all internal functions of the max-
imum entropy routines and can be used to incorporate these in ones own programs
for static linking.

source FORTRAN90 source files for the driver programs. Compilation and linking with
the libraries will produce the executables in bin and binS. I hope they are useful as
guidelines if one wants to incorporate the maximum entropy routines in ones own
programs.

manual contains this manual.

test contains test input and output files.

Note that all programs are 64-bit code. The code of MEVIR and MEVELER has been com-
pletely rewritten in FORTRAN90. All programs use a common Fortran module that
stores the options. In order to avoid ambiguities, the keys for a few options have been
changed from the original MEVIR and MEVELER options. These are marked where the
available options are discussed in detail.

2 Quick start

All programs have several options that can be set to fine tune performance. However, for
many cases the default options will do. The analysis of a velocity map data set is done in
two steps. In the first step, the raw data matrix is centered and the information required
by the various programs is extracted and written to a new file. As an example, take the
raw data file test1.matrix in the test-directory. The call

3

c:\path_to_program> PrepareVMI -P1 test1.matrix quadrant1.dat

will determine the number of rows and columns in the file test1.matrix, find the center,
and fold the four quadrants into a single data set which is written to the file quad-
rant1.dat. The option -P1 enables output of the protocol to the screen. The default is
no output, with -P2 the protocol is written to the file PrepareVMI.log.

The file can be analyzed either by MEVIR or by MEVELER. The call for MEVIR is

c:\path_to_program> Mevir -P1 quadrant1.dat

MEVIR will determine the number of rows and columns in the file, make a rough estimate of
the map with the matrix inversion method, and then start the maximum entropy routine.
The results are written to several files: The map (i.e. the slice of the velocity distribution),
the scaled map (i.e. the velocity distribution integrated over the rotation angle around
the cylinder axis: This is normalized to the number of events in the data), the best fit to
the data and the residuals. These are all matrices of the same size as the quadrant data
set. In addition, the map is projected onto the Legendre polynomials with L = 0,2,4,6,
resulting in the distribution functions Ql(v). The option -P1 again directs the protocol
output to the screen, while -P2 directs it to the file Mevir.log. The default is -P0,
corresponding to no output.

The call to MEVELER is analogous to MEVIR:

c:\path_to_program> Meveler -P1 quadrant1.dat

MEVELER first determines the number of rows and columns in the file, makes a rough
estimate of the map with the matrix inversion method, and then projects this onto the
Legendre polynomials. The default is that the first two components, Q0(v) and Q2(v),
are used as the starting map. Higher even Legendre components can be requested with
the option -Ln with n = 4 or n = 6, however, performance is not good, and the use
of MELEXIR is recommended instead. After finishing the initial guess, MEVELER starts the
maximum entropy routine. The results are written to several files: The primary result are
the Ql(v). The best fit to the data and the residuals are also saved, as is a reconstruction
of the 2D-map (i.e. the slice of the velocity distribution). These three results are matrices
of the same size as the quadrant data set. The option -P1 again directs the protocol
output to the screen, while -P2 directs it to the file Meveler.log. The default is -P0,
corresponding to no output.

The MELEXIR program does not use the quadrant file as input, but the projection of the
raw data onto the Legendre polynomials in the polar coordinates of the 2D-image. This
is also produced by the PrepareVMI.exe program. The Legendre projection is invoked by
the option -LPn, where n ≤ 6 is the highest Legendre order requested. The call

c:\path_to_program> PrepareVMI -P1 -LP2 test1.matrix LegPro1.dat

4

hence creates the file LegPro1.dat with the 3 columns corresponding to the Legendre
components with n = 0 – 2, each accompanied with a column containing the corresponding
standard deviations. This file is then read by MELEXIR by a call like

c:\path_to_program> Melexir -P1 LegPro1.dat

This uses the default -L2 for the Legendre components requested, i.e. only the even
orders L = 0, 2 are calculated. In this particular case the ”sinus/cosinus” representation
is used (see the paper [2]), which is more efficient than the direct use of the Ql(v).

The file test1.matrix in the test directory was made with model II described in the pa-
per [2], with an average of 1 count per pixel.The resulting velocity distributions Q0(v) and
Q2(v) from these three calculations are in the files MXdis.dat (from MEVIR), MEXdis.dat
(from MEVELER), and LMEMdis.dat (from MELEXIR). They should look rather similar.
This set of calculations is automatically performed by the ”runTest1.bat” Windows batch
file in the test directory.

The ”runTest2.bat” Windows batch file analyzes the file test2.matrix, which was made
according to model III of the MELEXIR paper [2], also with an average of 1 count per pixel.
This data set contains contributions from even and odd order Legendre components up to
L = 4. Since the centering algorithm does not function well with data sets containing odd
order components, the center of the matrix is explicitly given in the call to PrepareVMI:

c:\....> PrepareVMI -P1 -LP4 -IX513 -IZ513 test2.matrix LegPro2.dat

This creates a Legendre projection with L = 0..4. This is then analyzed by MELEXIR:

c:\....> Melexir -P1 -L43 LegPro2.dat

Here, the option -L43 selects the Legendre options for which the reconstruction is solved:
The first integer after the -L is the largest even order, the second integer the largest odd
order. I.e., -L43 solves for all even and odd Legendre orders up to n = 4.

The results of the two batch runs (run on a i5 notebook computer) can be found in
the subdirectories ResultTest1 and ResultTest2.

5

3 The algorithms

For a detailed description the reader is referred to the original papers [1, 2]. Here only
a short summary is given and illustrated by flow diagrams. The program finds the map
F which yields the best simulation of the data D. This approach avoids any numerical
modification or transformation applied to the data but uses instead only the numerically
stable forward Abel transform. This is equivalent to regarding all elements of F as
variational parameters aiming at maximizing the probability of the map given the data,
Pr(F |D). The latter can be written by the Bayesian equation

Pr(F |D) =
Pr(D|F)Pr(F)

Pr(D)
(1)

The a-priori probability of the data, Pr(D), is a constant for a given data set and model.
Since probabilities must be positive numbers, the two factors in the numerator in equ. 1
can be written as

Pr(D|F) =
1

ZL
exp (−L) (2)

Pr(F) = exp (αS) (3)

where ZL is a normalization constant. Maximizing the likelihood Pr(D|F) is equivalent
to minimizing the likelihood estimator L. The resulting map makes the actual data the
most likely event of a measurement. The likelihood estimator L measures the agreement
between the simulated data A predicted by the map F and the actual data D. For the
model of Gaussian noise this is given by

LG =
1

2

ND∑
J=1

(
AJ −DJ

σJ

)2

=
1

2
χ2 (4)

where ND is the number of data values. For Gaussian noise maximizing the likelihood is
equivalent to minimizing the sum of square deviations between the measured data and the
simulated data predicted by the model. When the data are particle counts, the Poissonian
likelihood estimator LP must be used,

LP =
∑
J

(AJ −DJ lnAJ + ln(DJ !)) (5)

Since the number of variable parameters (i.e. elements of F) is similar to the number of
data values to be fitted, many maps F are compatible with the data in the sense that
the corresponding estimator L is below a given threshold L0. Maximizing the a-priori
probability of the map Pr(F) selects the most likely map from this manyfold. This is

6

equivalent to maximizing the entropy function S which, for a strictly positive map, can
be given by

S = −
NF∑
J=1

FJ ln
FJ
eBJ

(6)

where BJ is a default. We follow an approach proposed by Skilling an Gull in 1985 [3].
First L is minimized below a certain threshold value L0. Subsequently, S is maximized
with the constrained L = L0. The first step selects from all possible maps those that are
compatible with the data within the desired accuracy. The second step selects from these
maps the one with the smallest information content. In other words, every other map
has information for which there is no evidence in the data. For this reason the method is
known as Maximum Entropy method.

3.1 MEVIR: maximum entropy velocity image reconstruction

The strategy used in the MEVIR method is schematically depicted in figure 1. The aim is
finding the map F which is a slice cut along the z-axis through the center of the velocity
distribution. We take this map as a matrix with the same dimensions N ×M as the data
matrix D. Application of the Abel transform R to the map yields the simulated image
A, again as a N ×M matrix. The map is iteratively varied until the simulated image
agrees within a given tolerance with the data - measured by the likelihood estimator L.
Application of the Abel transform is accomplished by a matrix multiplication.

A = FR (7)

Obviously, this transforms every row of F into the corresponding row of A, i.e., no corre-
lation between adjacent rows in F is assumed. The entropy measure defined in equ. 6 is
apparently independent of the ordering of the values in the map and hence also ignorant
of any correlation that might exist between adjacent elements of F. In order to account
for such a correlation, which obviously must exists in the map, Gull and Skilling have
proposed to use a so called hidden map H behind the visible map F [4]. These two maps
are related by a linear transformation T which we define as a convolution process which
may be repeated several times, creating a sequence of hidden layers between the hidden
map and the visible map.

F
(0)
ij = Hij (8)

F
(K)
ij =

(
1− 9γ

8

)
F

(K−1)
ij +

γ

8

i+1∑
k=i−1

j+1∑
l=j−1

F
(K−1)
kl (9)

Each iteration replaces the value of a particular pixel with a weighted average of this pixel
and its 8 immediate neighbors. A convenient value for γ is 1/2.

7

Figure 1: Schematic of MEVIR (maximum entropy velocity image reconstruction)
strategy: The Abel transform R calculates a simulated image A from the map F . The
likelihood estimator L compares this simulation with the data D. Projection of the map
F onto Legendre polynomials yields the angular velocity distributions Ql(v). The map
F is defined by application of the linear transformation T on a hidden map H, and the
entropy S measures the information contained in H. This introduces correlation between
adjacent elements of F . The hidden map H is varied until L is minimized below a given
threshold while S is maximized. The inverse Abel transform R−1 indicated by the dashed
arrow is never used.

8

The optimization is performed on the hidden map. Starting with the default map
HJ = BJ all elements of H are varied until the likelihood estimator L falls below a given
threshold and the entropy S is maximized. We use an algorithm which performs the
search for the optimum in a three-dimensional subspace. Two coordinates of this space
are the gradients of L and S with respect to H, the third is found by application of R
and its transpose to a linear combination of the two gradient vectors. A short description
can be found in [5]. We find the algorithm rather efficient, reaching convergence in ca. 20
- 50 iterations.

The visible map F is the primary result of this procedure. Although this map contains
the full information that can be extracted from the experimental data, further reduction
into a velocity distribution and anisotropies is frequently desired. For this purpose the
velocity distribution in spherical coordinates is usually written in the form

P S(v, θ) =
1

2
p(v) ·

(
1 +

∑
l>0

β(l)Pl(cos θ)

)
(10)

When the photofragmentation is the result of a dipole transition and the sample was
initially isotropic, the sum may be restricted to the term with l = 2. Equ. 10 is not con-
venient for our purpose, however, since the anisotropy parameters β(l) must be considered
functions of the velocity and are ill defined when p(v) becomes small. Therefore, we use
the form

P S(v, θ) =
1

v2

L∑
l=0

Ql(v)Pl(cos θ) (11)

Due to the orthogonality of the Legendre polynomials the functions Ql(v) can be obtained
from the map by first transforming to spherical coordinates followed by projection

Ql(v) = v2(2l + 1)

∫ π

0

P S(v, θ)Pl(cos θ) sin θ dθ (12)

The factor v2 in equ. 12 ensures that the area under each peak in Q0(v) is proportional
to the total ion count for this velocity component. The anisotropy parameters may be
obtained by the ratio

βl(v) =
Ql(v)

Q0(v)
(13)

which is, of course, only meaningful for velocities where Q0(v) has significant intensity.
The final result of the MEVIR method is thus a set of distribution functions Ql(v), and
these can be extracted to any desired degree l by the projection of equ. 12 since the map
F contains the full information that is hidden in the data.

9

Figure 2: Schematic of MEVELER (maximum entropy velocity Legendre reconstruc-
tion) strategy: The simulated image is directly calculated from the expansion of the an-
gular velocity distribution in Legendre polynomials, Ql(v). These distributions play the
role of the map F . They are obtained by a linear transformation T from a corresponding
set of hidden velocity distributions H which is subject to the entropy measure.

3.2 MEVELER: maximum entropy velocity Legendre reconstruc-
tion

The MEVIR algorithm makes no assumption on the form of the velocity distribution, except
that it is rotationally symmetric around the z-axis. In most experimental situations it
is, however, known that the velocity distribution should be well represented by equ. 11
with only a small number of Legendre polynomials involved. The numerical velocity
information can then be represented by a N × L matrix Q with matrix elements Qkl =
Ql(vk). The MEVELER algorithm, schematically shown in figure 2, uses this matrix as the
visible map. It is related to the hidden map H by the iterative convolution

Q
(0)
kl = Hkl (14)

Q
(K)
kl =

γ

2

(
Q

(K−1)
k−1,l +Q

(K−1)
k+1,l

)
+ (1− γ)Q

(K−1)
kl (15)

In practice we found good performance of the algorithm with γ = 1/2. With K = 0
the hidden map and the visible map are identical. With data matrices that contain on

10

Figure 3: Schematic of MELEXIR (maximum entropy Legendre expansion image re-
construction) strategy: The simulated Legendre projection Al(v) is calculated by forward
transform (R) from the expansion of the angular velocity distribution in Legendre poly-
nomials, Ql(v). These distributions play the role of the map F . They are obtained by
a linear transformation T from a corresponding set of hidden velocity distributions H
which is subject to the entropy measure. The agreement between the simulation Al(v)
and the data Dl(v) is measured by the Gaussian likelihood.

average one or more ions per pixel no hidden map is usually required.
For the MEVELER algorithm the transformation R is programmed so that it directly

transforms Q into A. The velocity map F used in the MEVIR algorithm is not involved in
the MEVELER algorithm but may be calculated from the final result for Ql(v).

3.3 MELEXIR: Maximum Entropy Legendre Expansion Image
Reconstruction.

This algorithm is described in detail in [2]. It uses the same Legendre expansion model for
the velocity distribution as MEVELER. However, instead of the matrix quadrant a projection
of the ion image onto Legendre polynomials in the polar coordinates of the ion image is
used as the data. The MELEXIR algorithm is schematically shown in figure 3. The relation
between the hidden map and the visible map is the same as for MEVELER. As for MEVELER,

11

for K = 0 the hidden map and the visible map are identical. With data matrices that
contain on average one or more ions per pixel no hidden map is usually required.

4 Preparing the data for MaxEnt analysis

4.1 Mapping detector to matrix

Before the description of the program the coordinates and other conventions used will be
shortly described. The experiment yields the two-dimensional coordinates of the charged
particles (electrons or ions) that hit the detector (see figure 4). We label these coordinates
by x and z, where the latter corresponds to the polarization vector of the laser, i.e.
the cylindrical symmetry axis. Usually the detection area is divided into pixels, and
ions hitting the same pixel are counted together. This naturally results in a numerical
representation of the data as a matrix, where each matrix entry corresponds to one pixel.
In the matrix form, each entry is identified by two indices (IZ , IX), where IZ indicates
the row and IX the column. Traditionally, A(1, 1) is the upper left corner of the matrix,
and A(N, 1) is the Nth value in the first column going downwards (see figure 4). When

Figure 4: Pixel structure of the detector (left) and its representation as a matrix (right).
The z-axis is the polarization direction of the photolysis laser, i.e. the axis of cylinder
symmetry. Pixels along the x-axis correspond to a row of the matrix, pixels going up
along the z-axis correspond to the matrix elements of a column going down. The red dot
indicates the center of the image. The indices of the matrix element in yellow are used to
define the center of the image.

images are obtained in the event counting mode, the primary result for each ion is a pair
of real numbers (z, x), and it is not necessary to assign these to the actual pixel structure

12

of the detector. Instead, binning into pixels could be done later by the software, e.g. by

IX(x) = INT(x/d) + 1 (16)

IZ(z) = INT(z/d) + 1 (17)

where d is the size of the bin (i.e. virtual pixel). For calculations with the data, however,
pixel indices have to be converted back into coordinates. This is done in all programs by

x = (IX − 0.5) (18)

z = (IZ − 0.5) (19)

I.e., the coordinate associated with a given matrix element is the center of the correspond-
ing pixel. So far we have set the origin of the coordinate system at the lower left corner of
the detector. For the analysis of the data it is more convenient to define the center of the
image as the coordinate origin. In the ”real” world the coordinates of the center (z0, x0)
are floating point numbers and can point to any position within any pixel (see the red dot
in the left part of figure 4). For numerical operations with the matrix this is, however,
inconvenient. Therefore, we assign the center of the matrix always to a corner of a pixel,
i.e., the four pixels meeting at this corner are the lower left corners of the four quadrants
of the image. We hence define as the center of the matrix the coordinates of the corner
that is closest to the ”real-world” coordinates (see red dot in the left part of figure 4).
The ” matrix-world” coordinates used in the programs for the center are the indices of
the matrix element that is to the right and below the red dot, i.e. (I, J) in figure 4. This
means: if the matrix is already a quadrant (as assumed by MEVIR and MEVELER), then the
”center” is at A(1, 1).

4.2 Centering the data matrix, contracting of quadrants

The program PrepareVMI.exe allows several methods to identify the center of the data
matrix:

a) In the simplest case, the indices (IZ,IX) of the ”center pixel” as defined above are
given. This is done with the options -IXnnn -IZmmm on the command line, where
nnn and mmm are positive integer numbers.

b) The program can calculate the center of mass of the image, i.e.

IX = INT(〈x〉) + 1 (20)

〈x〉 =

∑
j,k

k A(j, k)∑
j,k

A(j, k)
(21)

and the corresponding formula for IZ . This is invoked by the command line option
-MC=1.

13

c) The option -MC=2 invokes a centering algorithm. This is the default.

Figure 5: Contraction of the 4 quadrants of an image. The quadrants Q1 and Q4 are
folded down, the quadrants Q3 and Q4 are folded to the right, and then added together
with the weights wj. Presently, the weights are either 0 or 1, and are set by the option
-Wjklm, where j, k, l, m correspond to the quadrants in the order shown in the picture.
I.e., -W1111 (the default) will add all 4 quadrants, W0001 will only use quadrant Q4.

The centering algorithm should add those 4 pixels together that have the same distance
from the center and the same absolute value of the angle towards the z-axis. If the center
is not chosen properly, those 4 pixels that should be added together will be mapped to
four different pixels in the contracted image (i.e. the ”quadrant”). In the present version
of the program a function G(x, z) is maximized which is the integral over the square of a
distribution function P (x, z; r)

G(x, z) =

R∫
0

|P (x, z; r|2 dr (22)

Where P (x, z; r) is the probability of finding an ion at distance r from the point (x, z).
This distribution function is calculated as a histogram with a bin-size equal to the pixel
width. The rationale behind this choice is the assumption that a better centered image
will lead to a radial distribution with a higher contrast. Since the area under P (x, z; r) is
normalized to the total number of ions in the image, sharper peaks in the distribution will
lead to a larger integral of the square. Optimization is done with a simplex algorithm.
This is not especially fast, but very robust, and does not require gradients of the function.

14

5 Input for program PrepareVMI

The program is invoked by the command line

C:\> PrepareVMI filename1 filename2 -Option1 -Option2 ...

where filename1 is the name of the input file containing the raw data matrix. The input
file must exist. filename2 is the name of the output file. If the output file exists and the
”-OV” option is set, it is overwritten. Otherwise the filename ”DefaultQ.dat” is used. The
program interprets the first string that does not begin with a minus ”-” sign as filename1,
the second one as filename2. Otherwise the order of the command line arguments is not
important.

All options begin with a minus ”-” or a slash sign, followed by one or two letters (the
key) which are followed by a number. An equal ”=” sign between the key and the number
is also accepted. Presently, the following options are available:

-IX=n: Column index of center point. with n a positive integer number

-IZ=n: Row index of center point, with n a positive integer number

-SC=f: Scale factor, with f a floating point number. -SC=0.001 multiplies all matrix
entries with 0.001, the same is achieved by -SC=1.E-3

-TR: Use the transposed matrix if the data acquisition program stores the data
this way (i.e. pixel parallel to the cylinder axis into rows of the matrix).
Transposition must be done here, the transposition option is no longer available
in the MaxEnt routines.

-ST=f: Step size for the initial simplex in optimization of center. Default is -ST=15.0,
i.e., the initial simplex consists of the initial center point and two points shifted
by 15 pixels (one stepsize) along the x- and z-axes.

-Wnnnn: The list of weights for the four quadrants. W1111 means add all four quad-
rants, W0110 adds only quadrants 2 and 3.

-MC=n: Chooses the method for centering. (Note that this option was -M in
the old F2QC.exe program. Now -M is reserved for the MaxEnt
routines):

MC=0 uses the input values of -IX and -IZ

MC=1 uses the center of mass of the image

MC=2 uses simplex refinement starting with the center of mass. M2 is the de-
fault.

15

Any values given for -IX and -IZ are ignored with MC=1 and MC=2. When
the values of either -IX or -IZ are not positive numbers (e.g. zero), MC=2 is
used. When MC=0 is given but no values for -IX and -IZ, the center of the
matrix is returned (i.e. half the largest index of columns and rows.

-SH: The histogram is saved to a file named ”histogram.dat”. This can be done
also with MC=0 or MC=1, i.e. when no refinement of the center is requested.
Default is no file. (Note that this option was -H in the old F2QC.exe
program. Now -H is reserved for the MaxEnt routines)

-RH=n: Range for the histogram evaluation. E.g., -RH=350 uses all values of the
original matrix within a circle of radius 350 pixel around the assumed center,
and the histogram has 350 entries. Default is the largest circle that fits into
the original matrix. (Note that this option was -R in the old F2QC.exe
program. Now -R is reserved for the MaxEnt routines)

-LP=n: This option switches to the Legendre projection mode, i.e. the output file con-
tains the Legendre projected image up to L=n and their standard deviations.

-DV=f: When the Legendre projection mode is chosen, the floating point number f is
the stepsize in the velocity axis in pixel units. Default is -DV=1.0.

-P=n: Print switch. -P=0 (default) generates no output, -P=1 directs the output to
the screen, -P=2 sends it to the file PrepareVMI.log.

The only parameter that must be provided is the input data file name. Calling

C:\working directory\PrepareVMI datafile.dat

Is equivalent to

C:\working directory\PrepareVMI -MC2 -W1111 datafile.dat DefaultQ.dat

i.e., all 4 quadrants are added, the center is determined first by calculation of the center
of mass and subsequently refined with the centering algorithm. The result is written to
the file ”DefaultQ.dat”. The program determines whether all numbers are integer. If so,
the number of digits needed for the largest number is determined, and the file is written
in a format with this fixed field length, separated by blanks.

16

6 Input for MaxEnt programs

Both programs are called from the command line by

C:\> ProgramName [-CMDstring] datafile

Here, datafile is the name of the file containing the data. For Programname = MEVIR

or MEVELER, the file contains the particle counts of the contracted quadrant of the ion
image. The programs assume an ASCII file with every record corresponding to a row
of the matrix. The number of columns in the matrix is automatically determined by
analyzing the first record. The number of records give the number of rows of the matrix.
The data can be integer numbers or floating point numbers, separated by either spaces
or commas. The row index corresponds to the z-axis (i.e. the laser polarization axis),
the column index to the x-axis. Both MEVIR and MEVELER assume that all valid data are
either zero or positive, i.e., negative data entries are ignored in the analysis.

For ProgramName = MELEXIR, the input file must contain the Legendre projections
and their standard deviations as produced with the PrepareVMI program. Make sure
that the file contains the required number of Legendre components, i.e. when MELEXIR is
called with -Lnm, PrepareVMI must be called with -LPk with k ≥ max(n,m).

All control of the programs can be done with (optional) command strings CMDstring.
These must begin with a minus character or a slash, otherwise the string is interpreted as
the data file name. The command string contains letters followed by optional numbers.
The following options are recognized by all programs (the equal symbol can be omitted):

-I=n : maximum number of iterations. Default is -I=50.

-H=n : Number of hidden layers, default is no hidden layers (-H=0).

-T=n : Termination criterion. -T=0 is the classic method, i.e., the program iterates
until the likelihood criterion reaches the target, which may never happen. -
T=1 stops when the running average of the Gaussian likelihood criterion did
not change by more than 1 % in three consecutive iterations. -T=2 stops
when the Gaussian likelihood criterion did not change by more than 1 % in
three consecutive iterations. -T=3 and -T=4 are the same as -T=1 and -
T=2 but with the Poissonian likelihood criterion. Default is -T=2. MELEXIR

only uses the Gaussian likelihood. (Note: even when the Poissonian likelihood
estimator is used for the optimization, the Gaussian equivalent is also calcu-
lated. The latter shows less fluctuations and is hence useful for recognizing
self-consistency.)

-P=n : Print level. -P0 means no output to screen or log file (default). -P1 puts
output to the screen, -P2 to a log-file.

17

-R=n : Radius in pixel units for valid data area. Special cases: -R1 means all data (de-
fault for MEVIR), -R2 means all data in the circle with radius MIN(nrow,ncol),
where nrow is the number of rows in the matrix, and ncol is the number of
columns. -R2 is the default for MEVELER. The Legendre projection used in
PrepareVMI also uses only data within a circle, and the default is the largest
circle around the center that fits into the data matrix, i.e. it is equivalent to
the -R2 option of MEVELER. In MELEXIR a smaller radius can be chosen with
the -R=n option. However, to remain consistent with MEVELER, -R=2 uses all
data from the largest circle (patch220411), but is actually the default.

-BA=f: sets the reference value (i.e. the ”base”) of the map to the floating value f. A
negative value sets BA so that the integrated intensity of the image simulated
with BA as the default map is f times the total ion count in the data. For
MEVIR and MEVELER the default is -BA=1.0, MELEXIR uses the total ion count
divided by the number of velocity bins as default.

-DV=f: sets the stepsize DELTAV for the final velocity distribution to the floating value
f. Default is DV=1.0 Values less than DV=0.2 are probably not meaningful.
DV is used in MEVELER as the stepsize of the functions Ql(v). In MEVIR it is
used only for the Legendre projection at the end. MELEXIR assumes that DV
was already set in PrepareVMI for the Legendre projection.

-S=n : Defines the starting map. -S=0 is a constant map (F = BA), -S=1 uses a
distribution obtained by analysis of a crude Abel inversion of the data, -S=2
assumes that the initial map is in the array fmap when the subroutine is called.
Default is -S=1.

-Lnm : sets the number of Legendre distributions in MEVELER and MELEXIR. The first
digit n gives the largest even order, the second the largest odd order (MELEXIR
only). Default is -L2.

-C : Start with a map from a previous calculation. The map is read from the file
MXini.dat for MEVIR, MEXini.dat for MEVELER, and LMEMini.dat for MELEXIR.
It is equivalent to the option -S=2. .

The following options are specific for a particular program:

-G : Gaussian likelihood estimator is used, with the standard deviation for each
data value D given by

√
MAX(D, 1). Default is Poissonian likelihood. Applies

to MEVIR and MEVELER.

-M=n : Method switch. in MEVIR, M=1 switches to an alternative algorithm to cal-
culate the transform matrix. In MELEXIR, M=1 switches the sinus/cosinus
representation off for -L=2. Only for test use.

18

-B=n : Switch for background correction, MEVELER only. The background level is cal-
culated as the average intensity in the area outside the largest circle in the
data. This value is added to the simulated data in calculating the likelihood.
B=0 is the default (no background correction), B=1 switches the correction
on.

Calling MEVIR without any command string and only with the data file name will produce a
standard run, starting with a crude Abel inversion by the matrix method (-S=1), allowing
for 50 iterations (-I=50), using all the data in the matrix (-R=1) and Poissonian likelihood,
no hidden layers (-H=0), and terminate when the Gaussian likelihood criterion becomes
stationary (-T=2).

Calling MEVELER without any command string and only with the data file name will
produce a standard run, starting with a crude Abel inversion by the matrix method (-
S=1), followed by projection onto the Legendre polynomials with L=0 and L=2 (-L2).
This is used as the starting map and the maximum entropy routine is called, allowing for
50 iterations (-I=50), using Poissonian likelihood, no hidden layers (-H=0), and terminate
when the Gaussian likelihood criterion becomes stationary (-T=2).

Calling MELEXIR without any command string and only with the data file name will
produce a standard run, starting with a crude Abel inversion by the DAVIS method (-
S=1). Only the Legendre polynomials with L=0 and L=2 (-L2) are used. The maximum
entropy routine is called with this starting map, allowing for 50 iterations (-I=50), using
Gaussian likelihood, no hidden layers (-H=0), and terminate when the Gaussian likelihood
criterion becomes stationary (-T=2).

7 Program Output

7.1 MEVIR

The results are written to files:

MXmap.dat Final map F in the same format as the data matrix D.

MXsim.dat Matrix with the best fit to the data.

MXres.dat Matrix with the weighted residuals, i.e. the difference between data and
simulation divided by the standard deviation. (Note: The equivalent to
the standard deviation for Poissonian likelihood is the square root of the
calculated function value.)

MXdis.dat The velocity distributionsQl(v) corresponding to the Legendre polynomi-
als with l = 0, 2, 4, 6 found by projecting the final map onto the Legendre
polynomials.

Mevir.log when printing to a log-file was requested (option P2).

19

7.2 MEVELER

This program produces the following files:

MEXmap.dat Final map F in the same format as the data matrix D. In contrast to
the old MEVELER program, the output is now in scientific notation
with 5 significant digits (e.g., 0.12345E+02) and separated by
blanks.

MEXsim.dat Matrix with the best fit to the data.

MEXres.dat Matrix with the weighted residuals, i.e. the difference between data and
simulation divided by the standard deviation. (Note: The equivalent to
the standard deviation for Poissonian likelihood is the square root of the
calculated function value.)

MEXdis.dat The velocity distributions Ql(v) corresponding the the Legendre polyno-
mials with the requested l.

Meveler.log when printing to a log-file was requested (option -P2).

7.3 MELEXIR

This program produces the following files:

LMEMdis.dat The velocity distributions Ql(v) corresponding the Legendre polynomials
with the requested l.

LMEMsim.dat The best fit to the data, i.e. to the Legendre projections of the ion
image.

LMEMres.dat Residuals of the fit, i.e. DATA - FIT (no weighting here!)

LMEMuse.dat The data that were actually used (the input file may contain more Leg-
endre components and a longer velocity range).

Linverse.dat The velocity distributions Ql(v) obtained by the direct inversion (i.e. the
DAVIS type method).

Melexir.log when printing to a log-file was requested (option P=2).

The main difference is that MXmap.dat is the primary result in MEVIR, from which
MXdis.dat is derived, whereas in MEVELER and MELEXIR the primary result is MEXdis.dat
and LMEMdis.dat, respectively, which is then used to calculate MEXmap.dat in MEVELER.
The different prefixes MX, MEX and LMEM have been chosen to protect the files from over-
writing if the methods are used on the same data set.

20

8 The library MaxEntAbel.dll

This Windows dynamic link library (DLL) provides the tools that allow the users to
implement the routines of MEVIR, MEVELER, or MELEXIR into their own programs. It also
contains the routines for PrepareVMI. All parameter settings are encapsulated into a
FORTRAN module that is local in the DLL.

Together with MaxEntAbel.dll comes a library MaxEntAbel.lib which is used by the
linker to import the exported symbols of the DLL. This library must be linked with the
main program that should access the DLL. It should be possible to call the routines in
the DLL also from other programs like LabView.

I also provide a static library with the name libMaxEntAbel.lib which can be statically
linked to provide the same functions as those in the DLL, i.e. replacing MaxEntAbel.lib
in the linking process. The stand-alone programs in the binS directory were compiled
in this way. Note that in this case the compiler also needs access to the LaPack and
BLAS libraries (linear algebra packages and basic linear algebra subroutines). These
come usually with the compiler.

The DLL exports the following subroutines that can be called by the user.

8.1 SetOptions

This subroutine is called by

CALL SetOptions(OptString)

where Optstring is a string containing the options, separated by blanks. Each option
begins with either a - (minus) or a / (slash) symbol, followed by a two-letter or one-letter
code, and optionally a number. For example, the option -R300 sets the radius for the
data to be analyzed to 300 pixels. The program recognizes the option also if an = (equal)
symbol is inserted between the option code and the number. I.e., -R=300 or /R300 or
/R=300 are all equivalent.

After returning from the subroutine SetOptions, the string OptString contains all
strings that were not recognized as options. E.g., when the command line of the original
MEVELER program is processed, OptString will contain the filename of the input file.

8.2 Image2Data

This subroutine is called by

CALL Image2Data(fimage,ldf,nrow,ncol,dat,ldd)

where

21

!-- subroutine arguments

DOUBLE PRECISION, INTENT(IN OUT) :: fimage(ldf,*), dat(ldd)

INTEGER, INTENT(IN OUT) :: nrow, ncol

INTEGER, INTENT(IN) :: ldf, ldd

!

!--!

! on entry: !

! fimage(ldf,*) = contains the matrix of raw data !

! ldf = leading dimension of array fimage in calling program !

! nrow, ncol = logical dimension of the data in array fimage !

! dat(ndd) = array for the results !

! ndd = length of array dat in calling program, must be large enough !

! to hold the data of one quadrant or the Legendre projection !

! !

! on exit, when -LP option is not set: !

! nrow, ncol = the new logical dimension of the extracted quadrant. ndd !

! must be large enough to hold these data, ndd >= nrow*ncol !

! !

! on exit, when -LPn option is set: !

! nrow = number of bins along the velocity axis (nv); This depends on !

! the position of the center, the -R option, and the -DV option!

! ncol = number of Legendre components (i.e., nl = lmax+1). !

! ndd must be larger than nrow*ncol*2 = nv*nl*2 !

!--!

The array fimage has leading dimension ldf. On entry, nrow and ncol are the number of
rows and columns in fimage that contain the data (double precision numbers). On exit,
nrow and ncol are the number of rows and columns in the combined quadrant. This is
stored on array dat with size nrow*ncol. The user must provide sufficient memory, i.e.
ndd >= nrow*ncol.

When the option -LP is set, the program generates the Legendre projection instead
of the quadrant. The result is again in the array dat, with all columns directly following
each other. I.e., the size ldd must be at least 2*nl*nv, where nl is the number of Legendre
components, and nv is the number of bins along the velocity axis. These values are
returned on the variables nrow = nv and ncol = nl. Note that for each Legendre projected
value also the corresponding standard deviation is stored.

If one calls image2data a second time from the same main program, the previously
stored options remain valid. If, after doing a Legendre projection, the second call should
make a quadrant extraction, the Legendre projection option must be switched off again,
by supplying a negative number for the parameter, e.g. ”-LP=-1”.

Details of the use may be seen in the source code PrepareVMI.f90, which is the
driver routine for PrepareVMI.exe.

22

8.3 MevirDLL

The subroutine is defined by:

subroutine MevirDLL (dat,nrow,ncol,fmap,work,nwork)

!-- subroutine arguments:

double precision, intent(IN OUT) :: dat(nrow,ncol), fmap(nrow,ncol)

double precision, intent(IN OUT) :: work(nwork)

integer , intent(IN) :: nrow,ncol,nwork

!

!---!

! on entry: !

! dat(nrow,ncol) is the quadrant data !

! fmap(nrow,ncol) is the map. With "-S2" the initial map is already in fmap, !

! otherwise the initial map is set by the routine. !

! work(nwork) is a work array, where nwork >= 10*nrow*ncol !

! !

! on exit: !

! fmap : contains the final (hidden) map. !

! dat : the true map in classical representation (i.e. slice !

! through the velocity distribution). !

! !

! further results are located at the following memory positions: !

! work, block #1: residuals of the fit !

! work, block #2: best fit !

! work, block #3: true map, internal scaling (i.e. sum = ncounts) !

! work, block #4: the distribution functions Q_l(v), l=0,2,4,6 !

! !

! the matrix results all have dimension (nrow,ncol), the distribution !

! functions have dimension Q(10*nrow,4) !

! !

!---!

Details of the use may be seen in the source code Mevir.f90, which is the driver routine
for Mevir.exe.

23

8.4 MevelerDLL

This subroutine is defined by

subroutine MevelerDLL (daten,nrow,ncol,fmap,nv,llm,work,nwork,qini)

!-- subroutine arguments:

double precision, intent(INOUT) :: daten(nrow,ncol), fmap(nv,llm)

double precision, intent(INOUT) :: work(nwork)

integer , intent(IN) :: nrow,ncol,nv,llm,nwork

logical , intent(IN) :: qini

!---!

! !

! on entry: !

! !

! daten : array of one quadrant of the image !

! nrow, ncol: dimension of the daten array (i.e. the array with the data of !

! one quadrant of the ion counts. Note that this must also be !

! the physical dimension of the daten array, i.e., the second !

! column _MUST_ begin immediately following the first column. !

! The MAXENT subroutines think that this is a vector! !

! fmap : initial guess for the map !

! nv, llm : physical and logical (!) dimension of fmap, the MAXENT routine!

! thinks this is a vector. !

! work : work array !

! nwork : size of workarray, must be at least 5*nrow*ncol + 5*nv*llm !

! qini : if .true., size of the coefficient array BSAVE will be cal- !

! culated and the array will be allocated. !

! !

! on exit: !

! fmap = contains the true map (the hidden map is discarded !

! work(1:ndat) = the residuals of the fit !

! work(ndat+1:2*ndat) = the best fit to the data !

! work(2*ndat+1:3*ndat) = the simulated 2D-map !

! work(ip8) = rmsd : Gaussian RMSD between data and fit !

! work(ip8+1) = ent : normalized entropy !

! work(ip8+2) = sum1 : integrated intensity of the reconstructed image !

! work(ip8+3) = av : average intensity !

! !

! where ip8 = 3*ndat + 1 !

!---!

On entry, dat(nrow, ncol) contains the combined quadrant. The user must provide stor-
age for the arrays basis and work. On exit, fmap contains the Legendre-distribution

24

functions Ql(v). The first three blocks of the array work contain the residuals of the fit
(i.e. work(1:ndat)), the fit to the data (i.e. work(ndat+1:2*ndat)), and the fitted slice
through the velocity distribution (i.e. work(2*ndat+1:3*ndat), the 2D-representation of
the map).

On the first call, qini = .true. initiates a dry run of the transform which determines
the memory requirement for the transform. This can be very large. E.g., for a quadrant
with 500 columns and rows and a map with 500 velocity steps (1 pixel wide) and 2
Legendre polynomials, ca. 66 MWORD of double precision (i.e. 530 MByte) need to be
allocated. If a second call to MevelerDLL is made with the same values for nrow, ncol,
nv, and llm, qini=.false. skips this step. Details of the use may be seen in the source code
Meveler.f90, which is the driver routine for Meveler.exe.

8.5 MelexirDLL

The interface to this subroutine is:

subroutine MelexirDLL (dat,sigma,fmap,base,datinv,nr,nt)

integer, intent(IN) :: nr, nt

double precision, target :: dat(nt),fmap(nt),base(nt),sigma(nt),datinv(nt)

!--!

! on entry:

! nr = number of bins along the r-axis and the v-axis.

! nt = total number of data values (and fmap-values), nt = nr * ltotal,

! where ltotal is the total number of Legendre components

! dat = contains the data, i.e. the Legendre projected ion image. First the

! even orders, then the odd orders. The data must immediately follow

! since the maximum entropy algorithm treats dat as a vector.

! sigma= the standard deviations of the values in dat

! fmap = the initial map (with option -S2). With -S0 fmap will be set to a

! constant, with -S1 (default) the initial fmap is obtained by direct

! inversion (i.e. the DAVIS algorithm).

! base = the default value of the map for the entropy calculation. I.e.,

! fmap = base maximizes the entropy.

!

! on exit:

! datinv = the map obtained by the DAVIS inverse

! fmap = the hidden map

! base = the best fit to the data

! sigma = the true map

! dat = the residuals of the fit

!

!--!

25

Details of the use may be seen in the source code Melexir.f90, which is the driver routine
for Melexir.exe.

8.6 CheckOption

This subroutine offers a possibility to get individual parameters encapsulated in the DLL.
The call is

CALL CheckOption(key,iopt,fopt,qopt)

where key is a character variable with the key for the requested option, whereas iopt,
fopt, and qopt are the integer, double precision, and logical values associated with this
option. In this way the calling program can know the actual settings of all options,
including the default settings. For examples, see the code in Mevir.f90, Meveler.f90,
or Melexir.f90.

8.7 SetDefaultOptions

This subroutine sets all parameters encapsulated in the DLL to their default values. The
call is

CALL SetDefaultOptions ()

This function is useful if the main program calls any of the DLL routines more than once.
All parameter settings remain in the DLL until a new value is set. Hence, for a sequence
of calls that use the same settings, only one call to SetOptions is required at the beginning
of the sequence. Each parameter value can be reassigned by a new call to SetOptions with
the corresponding string. E.g.,

OptString = ’-IX=0 -IZ=0’

CALL SetOptions (OptString)

resets the predefined center of the matrix to zero, hence the next call to Image2Data will
optimize the center position.

The options -TR, -SH, -G, and -C have no value associated, i.e. their presence in
the option string sets a flag. E.g., the option -G switches from Poissonian likelihood
(default) to Gaussian likelihood. This applies to MEVIR and MEVELER only. If one
wants to call MEVIR twice from the same program, first with Gaussian and then with
Poissonian likelihood, one needs a way to reset the flag. This can be done with a call
to SetDefaultOptions, thereby setting all parameters to default values, or by sending the
string -G0 via SetOptions. Likewise, the other flags are reset by -TR0, -SH0, and -C0.
(More precisely, any number following the key will reset this flag.)

26

9 citation

If you like my programs and use them in your scientific work, I would be grateful if you
could cite the two papers [1, 2] in your publications. Thanks!

References

[1] B. Dick, Phys. Chem. Chem. Phys., 16 (2014) 470.

[2] B. Dick, Phys. Chem. Chem. Phys., 21 (2019) 19499.

[3] J. Skilling and S. Gull, in Maximum-Entropy and Bayesian Methods in Inverse Prob-
lems, C.R. Smith and W.T. Jr. Grandy, eds., Reidel, Dordrecht, 1985;

[4] S. Gull and J. Skilling Quantified maximum entropy, memsys5 users’ manual Techni-
cal report, Maximum Entropy Data Consultants Ltd. South Hill 42 Southgate Street
Bury St. Edmunds Suffolk, IP33 2AZ, U.K., 1999.

[5] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical recipes
in Fortran 77: the art of scientific computing, chapter 18.7, Cambridge University
Press, 1988.

27

