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Abstract
We address a practical challenge in agile web development against
NoSQL data stores: Upon a new release of the web application, enti-
ties already persisted in production no longer match the application
code. Rather than migrating all legacy entities eagerly (prior to the
release) and at the cost of application downtime, lazy data migration
is a popular alternative: When a legacy entity is loaded by the ap-
plication, all pending structural changes are applied. Yet correctly
migrating legacy data from several releases back, involving more
than one entity at-a-time, is not trivial. In this paper, we propose
a holistic Datalog¬non-rec model for reading, writing, and migrating
data. In implementing our model, we may blend established Data-
log evaluation algorithms, such as an incremental evaluation with
certain rules evaluated bottom-up, and certain rules evaluated top-
down with sideways information passing. Our systematic approach
guarantees that from the viewpoint of the application, it remains
transparent whether data is migrated eagerly or lazily.

Categories and Subject Descriptors H.2.3 [Database Manage-
ment]: Languages

Keywords Schema evolution, NoSQL data stores, Datalog

1. Introduction
In agile web development, NoSQL data stores have become quite
popular. Consequently, virtually all major players in the cloud
market have a NoSQL data store in their portfolio, e.g., Google
(Datastore), IBM (Cloudant), Amazon (SimpleDB), or Microsoft
(DocumentDB). Additionally, several open-source products, such
as MongoDB or CouchDB, are available. What makes NoSQL data
stores attractive is their ability to scale to large volumes of data, and
equally, to store data of heterogeneous structure. This allows for
frequent releases, whereas a relational database commonly requires
an eager migration of all legacy data prior to the next release.

With NoSQL data stores, developers prefer to migrate legacy en-
tities lazily, when they are next accessed by the application. Several
NoSQL object mapper libraries natively support lazy migration [8].
While a convenient short-term fix, it is rather easy to specify con-
flicting migration operations in object mapper class declarations,

even for very basic changes such as adding, removing, or renaming a
property [7]. Moreover, migrations that involve more than one entity
at-a-time, or require upgrades from several releases back, increase
the challenge. Let us illustrate this point with an example.

EXAMPLE 1. We consider a gaming app. Figure 1 shows the con-
tents of the NoSQL data store over time. Above the time line, we
see the actions triggering changes. Below, we see the persisted enti-
ties. Entities with continuous borders are persisted eagerly, whereas
entities with dashed borders will be derived lazily.

All entities persisted by the first release adhere to the same
structure. Typically, this “schema” is imposed by the application,
often using dedicated NoSQL object mapper libraries. At times ts1
through ts5, player and mission entities are persisted. Each player
has an identifier and a name. Each mission also has an identifier, a
title, and a reference to the player currently pursuing this mission.
Internal to the data store, we timestamp all entities.

At time ts6, a new release is deployed. From now on, all player
entities also carry a property score, initialized to 50. However, we do
not migrate the legacy entities eagerly, to avoid downtime. Instead,
we exploit the schema flexibility of the NoSQL data store, and store
both versions of entities for now.

At timestamp ts7, Lisa’s player is updated by a put-call. Several
NoSQL data stores follow an append strategy, where an update
results in an additional, timestamped entity. At timestamp ts8, we
yet again release a new version of the application where missions
carry their player’s score. Again, we do not immediately migrate
the legacy entities. At time ts9, the application requests the mission
with id 100. Since the mission entity with timestamp ts5 is outdated,
we need to lazily migrate it. Copying Lisa’s score to her mission
entity generates the up-to-date entity.

At ts10, the application requests mission 101. In migrating
mission 100, we applied the pending copy operation. Yet with
mission 101, this is not enough, since Bart’s player does not even
carry a score yet. Executing the copy alone yields the incorrect entity
derived by the dashed arrows. Instead, we need to proceed as shown
by the continuous arrows, and apply two pending schema changes:
We add the score to player Bart before we copy it to his mission. 2

Contributions: In this paper, we propose a Datalog-based model:

1. Our model formalizes all structural variants of persisted enti-
ties in non-recursive Datalog with negation. In particular, we
capture strongly consistent writes and reads via put- and get-
calls. We further model a core set of migration operations for
adding, removing, and renaming, as well as copying and moving
properties, originally proposed by us in [6].

2. We discuss alternative evaluation strategies for our Datalog
programs. In any case, rules capturing put- and get-calls from



Figure 1. The state of a NoSQL data store over time. At times ts9 and ts10, the mission entities are loaded and migrated lazily.

the application are carried out eagerly. However, rules capturing
migration can be evaluated eagerly or lazily.

3. We leverage the rich body of work on Datalog evaluation
algorithms and propose a lazy migration protocol where all
get-calls always return up-to-date results. Thus, we may safely
employ lazy migration in NoSQL application development, and
deploy new releases without worrying about downtimes.

Selected related work: Datalog is a state-of-the-art formalism
for data exchange [2]. It is only natural to use it in the context
of schema evolution. In this paper, we not only declare schema
mappings, but also updates in Datalog. There is considerable work
proposing updates to rule-based languages, with little consensus
reached [5]. Since we only insert singletons (versus set-oriented
updates), updates are less complex in our use case.

There is a large variety of Datalog evaluation algorithms, with
top-down, bottom-up, and the magic set algorithm being the most
well-known [9]. Incremental evaluation of Datalog queries in the
presence of updates has also been a timeless research topic. We refer
to [3] for a comprehensive overview over related work.

2. A Holistic Datalog-Based Model
In modelling our use case in Datalog, we disregard certain peculiari-
ties of working with JSON data (such as its hierarchical structure
and multi-valued entities1), since our main focus is on the semantics
and order of data migration. We largely follow the Datalog syn-
tax introduced in [9], capitalizing variables in Datalog rules. The
underscore denotes anonymous variables.

2.1 Puts and Gets against NoSQL Data Stores
We model the application accessing entities in a straightforward
manner. Let kind(ID, P1, . . . , Pn) be the current schema for a given
kind, as declared by an object mapper class declaration of the current
application release: Each entity of this kind has a unique ID, and
properties named P1, . . . , Pn. We persist an entity via a method call
put(kind(id, p1, . . . , pn)), and we load an entity given its identifier
via a call get(kind, id). To keep our model lean, we do not look into

1 Mapping such data formats to a relational model has been studied exten-
sively for XML. For our purposes, we simply “flatten” JSON documents.

deletion or queries other than calls to get, which returns a singleton.
We assume strict consistency for puts and gets, as implemented by
some (but not all) NoSQL data stores (e.g., [4]).

Internally, we timestamp all entities. Our timestamp simulates a
logical clock, and tracks the last modification under the assumption
that all actions are carried out eagerly.

EXAMPLE 2. We assume the current application release declares
the schema Player(ID,NAME). We further consider the database
state entered by executing the action sequence

a1: put(Player(1, "Lisa"));
a2: put(Player(1, "Lisa S."));
a3: get("Player", 1);

i.e., persisting Lisa’s player, updating it, and retrieving it back.
We model the put-calls by EDB predicates added to the database.

Below, ts1 and ts2 denote fresh timestamps.

r1: Player(1, "Lisa", ts1).
r2: Player(1, "Lisa S.", ts2).

We also model the get-call by Datalog rules, fetching back the
latest instance of the entity (i.e., that with the latest timestamp).
Self evidently, in a performant implementation, get-calls would be
supported by an index to efficiently retrieve the latest instance.

r3: legacyPlayer(ID, TS) :-
Player(ID, _, TS), Player(ID, _, NTS), TS < NTS.

r4: latestPlayer(ID, TS) :-
Player(ID, _, TS), not legacyPlayer(ID, TS).

r5: getPlayer(ID, NAME) :-
Player(ID, NAME, TS), latestPlayer(ID, TS).

Evaluating query predicate getPlayer(1, NAME) yields the up-
to-date property values of Lisa’s player. 2

In maintaining the state of the data store incrementally, we
distinguish two kinds of Datalog rules: Facts derived from residual
rules model lasting changes, such as writing an entity. A fact derived
from a residual rule will hold true even in the presence of future
actions. Since residual rules declare a monotonously growing set of
facts, we may re-use these facts in future computations. Transient
rules compute intermittent facts only required for evaluating the



Let kind[r](ID, P1, ..., Pn) be the schema imposed by the current application release. ts denotes a fresh timestamp associated with release r.

i) add kind.Pn+1 = v, where Pn+1 is a new property name and v is a default value (in the new version of the entity, Pn+1 has value v):
kind[r + 1](ID, P1,...,Pn, v, ts) :- kind[r](ID, P1,...,Pn, OTS), latestkind[r](ID, OTS).

ii) delete kind.Pi

kind[r + 1](ID, P1,...,P(i-1),P(i+1),...,Pn, ts) :- kind[r](ID, P1,...,Pn, OTS), latestkind[r](ID, OTS).

Let kindS[r](ID, S1, ..., Sn) and kindT[r](ID, T1, ..., Tm) be the current source and target schema imposed by the application.

iii) copy kindS.Si to kindT where kindS.ID = kindT.Tj

kindT[r + 1](ID_T, T1,...,Tm, Si, ts) :- kindT[r](ID_T, T1,...,Tm, TS_T), latestkindT[r](ID_T, TS_T),
kindS[r](ID_S, S1,...,Sn, TS_S), latestkindS[r](ID_S, TS_S), ID_S = Tj.

kindT[r + 1](ID_T, T1,...,Tm, null, ts):- kindT[r](ID_T, T1,...,Tm, TS_T), latestkindT[r](ID_T, TS_T),
not kindS[r](ID_S, S1,...,Sn, TS_S), ID_S = Tj.

iv) move kindS.Si to kindT where kindS.ID = kindT.Tj , with the same rules as for copy, as well as the following rule:
kindS[r + 1](ID, S1,...,S(i-1),S(i+1),...,Sn, ts) :- kindS[r](ID, S1,...,Sn, OTS), latestkind[r](ID, OTS).

Figure 2. Residual rules for migrations declared in the schema evolution language from [6].

query predicate. Facts derived from transient rules may not hold true
in the presence of future changes, and can be timely discarded.

EXAMPLE 3. In the previous example, r3 is a residual rule: Once
the initial player entity has been overwritten, it remains a legacy
entity. The transient rules r4 and r5 merely assist in evaluating the
query predicate. Yet if Lisa’s player is updated later on, the facts
derived from these rules are no longer valid. 2

Initially, the data store is empty. Let a1, . . . , an be an action
sequence. For each action ai we compile an action tuple

AT (ai) = (∆i, Ri, Ti, pi)

where ∆i is a set of EDB facts (i.e., entities put to the data store),
Ri and Ti are residual and transient Datalog rules, and pi is a query
predicate (empty for put-calls).

To capture the effect of action an, we evaluate a Datalog query
Qn = (Πn, pn) where the Datalog program Πn consists of the
rules R1 ∪ · · · ∪Rn ∪ Tn, and the data instance Dn consists of all
entities put to the data store, i.e., Dn = ∆1 ∪ · · · ∪∆n. Then the
result Πn(Dn) of applying Datalog program Πn to Dn is the set of
IDB facts that are logical consequences of Πn ∪Dn.

Since we evaluate non-recursive Datalog rules with negation, we
may compute the IDB relations in the order of their dependencies [9].
This is our basis for maintaining the database state incrementally.
The function ResDB(a) declares the computation of the residual
entities after executing an action sequence a1, . . . , an:

ResDB(a1) = R1(∆1)

ResDB(an) = Rn( ResDB(an−1) ∪∆n )

Instead of evaluating all residual rules from scratch, we incremen-
tally build upon the facts already derived from residual rules:

Πn(Dn) = Tn(ResDB(an)).

We next specify how to compile action tuples for puts and gets.

Put-calls: Let kind(ID, P1, . . . , Pn) be the schema currently im-
posed by the application. We consider a put-call

put(kind(id, p1, . . . , pn));

Let ts be a fresh timestamp, then we generate an action tuple where
the residual rule tracks which entities have become legacy entities:

∆ = { kind(id, p1, . . . , pn, ts) },
R = { legacykind(ID, TS) :- kind(ID, P1,. . . ,Pn, TS),

kind(ID, S1,. . . ,Sn, NTS), TS < NTS. },

and further, T = ∅, and p being the empty query.

Get-calls: Next, we consider a get-call requesting an entity,

kind(id, p1, . . . , pn) := get(kind, id);

Let ts be a fresh timestamp, then we generate an action tuple with
∆ = ∅, and further

R = { legacykind(ID, TS) :- kind(ID, P1,. . . ,Pn, TS),
kind(ID, S1,. . . ,Sn, NTS), TS < NTS.}

T = { latestkind(ID, TS) :-
kind(ID, P1,. . . , Pn, TS), not legacykind(ID, TS).,

getkind(ID, P1,...,Pn) :-
kind(ID, P1,. . . , Pn, TS), latestkind(ID, TS). }

p = getkind(id, P1,...,Pn)

EXAMPLE 4. Example 2 shows the rules derived from the action
sequence a1 through a3. 2

In compiling action tuples, certain rules may be generated
multiple times for different actions. Since these rules will be
identical, it is merely a syntactical artifact of our approach.

2.2 Migrating Legacy Entities
We consider a small, general-purpose set of schema evolution
operations, first proposed in [6], containing add, rename, remove,
copy, and move operations. We believe the given operations cover
the bulk of practical use cases. In particular, copying properties
(thus denormalizing entities), is essential in NoSQL data stores,
where joins are often not supported. We can easily support additional
operations, as long as they can be expressed in our Datalog fragment.

Schema evolution operations also modify the database state.
We denote the current schema of application release r for a given
kind by kind[r](ID, P1, . . . , Pn). The next release r + 1 introduces
a new schema version. With each new schema version kind[r +
1](ID, P1, . . . , Pm), we always compile the residual rules shown
below. We do so for each kind occurring in the data store. These
rules ensure that only the values from the latest instance of an entity
are migrated. Note that these rules are monotonous: Once the new
schema version has been introduced, any entities persisted by future
actions will match a new schema. Therefore, facts derived from the
rules below remain true even in the presence of future puts.

legacykind[r](ID, TS) :-
kind[r](ID, P1,. . . ,Pn, TS),
kind[r](ID, S1,. . . ,Sn, NTS), TS < NTS.

latestkind[r](ID, TS) :-
kind[r](ID, P1,. . . , Pn, TS), not legacykind[r](ID, TS).

For each new release, we also declare a new schema version for
all other kinds. So for each kind’[r](ID, A1, . . . , Ak) with entities



// add Player.SCORE = 50;

Player2(ID, NAME, 50, ts6) :-

Player1(ID, NAME, OTS), latestPlayer1(ID, OTS).

Mission2(ID, TITLE, PID, ts6) :-

Mission1(ID, TITLE, PID, OTS), latestMission1(ID, OTS).

// copy Player.SCORE to Mission where Player.ID = Mission.PID

Mission3(ID, TITLE, PID, SCORE, ts8) :-

Mission2(ID_T, TITLE, PID, TS_T), latestMission2(ID_T, TS_T),

Player2(ID_S, NAME, SCORE, TS_S), latestPlayer2(ID_S, TS_S),

ID_S = PID.

Player3(ID, NAME, SCORE, ts8) :-

Player2(ID, NAME, SCORE, OTS), latestPlayer2(ID, OTS).

Figure 3. (Selected) residual rules for our running example.

persisted in production that are not affected by a schema change, we
declare the following residual rule. Again, ts is a fresh timestamp,
associated with release r.

kind’[r + 1](ID, A1, . . . , Ak, ts) :-
kind’[r](ID, A1, . . . , Ak, OTS), latestkind’[r](ID, OTS).

This greatly simplifies our Datalog rules. Naturally, in a practical
implementation, we optimize away such ineffective rules.

Figure 2 shows the residual rules for our schema evolution oper-
ations. The rules for adding and removing properties are straightfor-
ward. We omit the rule for renaming, since it is trivial. In copying
and moving properties, we always assume a 1:N relationship be-
tween the source and the target kind (c.f. our discussion of safe
migrations in [6]). Moreover, the residual rules declare an outer-join
semantics for target entities without a matching source entity.2

EXAMPLE 5. For our scenario from Figure 1, Figure 3 shows (a
subset of) the rules for the migrations between releases. 2

3. Data Migration Protocols
There is a variety of Datalog evaluation algorithms, with the most
prominent being standard textbook material [9]. We are interested in
execution protocols where put- and get-calls are evaluated eagerly
and schema migrations are either eager or lazy. We consider lazy
migration correct if upon accessing an entity via a get-call, we obtain
the same entity as with eager migration. Then then the migration
strategy remains transparent to the application.

We assume that put- and get-calls are always evaluated eagerly,
and therefore in an incremental bottom-up approach. Since we
only generate non-recursive Datalog with negation, Datalog¬non-rec,
we may simply evaluate rules bottom-up, in the order of their
dependencies, or even simpler, the timestamps assigned to them.
Due to the monotonicity of residual rules we may maintain derived
facts incrementally, in the spirit of semi-naive Datalog evaluation.

Eager migration: Since the residual rules for data migration
are within Datalog¬non-rec, they may also be evaluated bottom-up
and incrementally. As a straightforward optimization, we can
timely discard legacy entities: Given two versions of an entity
kind[i](id, p1, . . . , pn, tsi) and kind[j](id, s1, . . . , sm, tsj), we may
discard the former if tsi < tsj . In fact, many prominent NoSQL
data stores follow an append-approach with put-calls and timestamp
all entities. A data store-internal garbage collection mechanism then
discards legacy entities no longer needed (e.g. [1]).

Lazy migration: Lazy migration is triggered by get-calls, and
evaluated top-down, deriving only the necessary intermittent facts

2 This differs from the semantics of copy- and move operations in our earlier
work [6]. The new approach is consistent with the assumption in this paper,
namely that the latest application release implicitly declares a schema, so
null values are introduced for missing values.

from residual rules. We intend to blend incremental bottom-up
evaluation for put-calls with top-down evaluation for get-calls,
employing sideways information passing.

EXAMPLE 6. We again consider our showcase. Given the residual
rules from Figure 3, the entities timestamped ts6 and ts8 in Figure 1
(as well as some additional, purely auxiliary facts) are derived lazily
upon the get-call at time ts10. 2

In implementing lazy migration, we need to hold on to legacy
entities in several versions until they are no longer needed. For
instance, in Figure 1, the mission entity with timestamp ts5 may
only be discarded once lazy migration has produced its most up-to-
date version (timestamped ts8). Thus, a special-purpose “garbage
collection” mechanism is required. This will need to hold on to
residual rules until they, too, cannot fire anymore, since all matching
entities have meanwhile been garbage collected.

4. Outlook on Future Work
This article introduces a formal model for migrating legacy data
between software releases against NoSQL data stores. To our
knowledge, this is the first systematic approach to a relevant practical
problem where only shirt-sleeve solutions exist today.

Our Datalog rules not only define clean semantics for data
migration, but also come with a variety of correct evaluation
algorithms: Whether we evaluate rules eagerly (bottom up), lazily
(top-down), or blend both approaches (with eager puts and gets, and
lazy migrations), we are guaranteed to obtain a correct result. Our
immediate next step is the detailed specification of our migration
protocol and a formal proof of its correctness.

We are currently integrating our protocol into a real-life NoSQL
data store as part of our schema management component. This
requires extensions to more complex NoSQL data models. In partic-
ular, a practical implementation will need to bridge the impedance-
mismatch between hierarchical data format persisted in NoSQL data
stores and the Datalog rules that identify properties by index posi-
tion. Further, we will extend to access operations beyond put- and
get-calls, and consider simple queries. Another task is to devise an
efficient garbage collection mechanism for pruning legacy entities
from the NoSQL data store.
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