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Abstract—Data accumulating in data lakes can become in-
accessible in the long run when its semantics are not available.
The heterogeneity of data formats and the sheer volumes
of data collections prohibit cleaning and unifying the data
manually. Thus, tools for automated data lake analysis are of
great interest. In this paper, we target the particular problem
of reconstructing the schema evolution history from data lakes.
Knowing how the data is structured, and how this structure
has evolved over time, enables programmatic access to the
lake. By deriving a sequence of schema versions, rather than
a single schema, we take into account structural changes over
time. Moreover, we address the challenge of detecting inclusion
dependencies. This is a prerequisite for mapping between suc-
ceeding schema versions, and in particular, detecting nontrivial
changes such as a property having been moved or copied.
We evaluate our approach for detecting inclusion dependencies
using the MovieLens dataset, as well an adaption of a dataset
containing botanical descriptions, to cover specific edge cases.

Keywords-NoSQL databases; schema version extraction; evo-
lution operations; integrity constraints; inclusion dependencies

I. INTRODUCTION

These days, large amounts of data are being collected
and stored in data lakes for later analysis. Often, the data
is collected in a schema-flexible or schema-less NoSQL
database, since these systems allow for convenient storage
of heterogeneous datasets. However, when the structure and
semantics of the data stored are not known, accessing the
data can become expensive and complicated. Therefore,
automated tools for analyzing and understanding data lakes,
extracting integrity constraints or even a schema, are a lively
research area, e.g. [1]–[5].

In this article, we target the analysis of data lakes ac-
cumulating in NoSQL databases. In particular, we focus
on recognizing the structural changes that have occurred
over time. These may be as simple as a property having
been added, renamed, or deleted. However, we also consider
changes affecting more than one type of entity, where prop-
erties are moved or copied. Such changes, effectively de-
normalizing the data, are particularly common with NoSQL
data: Since many NoSQL database management systems do
not implement join queries, NoSQL practitioners introduce
redundancy in favor of faster data access [6].

As a specific example, let us consider an application
recording observations of species in the Baltic sea.

Example 1.1: Figure 1 shows some sample entities
in JSON format. The database stores entities of type
Protocols as well as information about the observed
Species. The Species entities describe different species
of mussels. The data is heterogeneous: All entities carry
the scientific names, as well as the timestamp ts denoting
the last write to the entity. However, only one entity has
a property category with the catalogue number of the
species. In the entities with the most recent timestamps,
the catalogue number is stored as WoRMS (short for World
Register of Marine Species).
Protocols record the observation time, the location

(longitude x, latitude y, and depth z in cm), as well as a
reference to the species spec_id, and finally, a timestamp
ts. Only one Protocols entity has a WoRMS property. �

Like other state-of-the-art schema extraction algorithms,
our approach from earlier work [3] produces a JSON schema
describing Protocols, as shown in Figure 2. However,
this description does not take into account changes to the
schema that occur over time. In our example, properties like
WoRMS that have been added are merely annotated as having
an occurrence less than 100%.

In this paper, we make a case for extracting a sequence
of schema versions, rather than a global schema description.
Moreover, we propose mappings between these schema
versions. A data analyst with domain knowledge may then
choose which mappings seem most plausible. In our run-
ning example, renaming property category in Species
entities to WoRMS is such a mapping. Thus, the complete
schema evolution history may be recovered. This process is
sketched in Figure 3, and has been implemented within our
Darwin tool (c.f. [7] for an earlier version of Darwin not
yet equipped with this feature). Additionally, it is useful to
gain insight into the inter-connectedness of the data.

Example 1.2: In our example, the property spec_id
of Protocols is a foreign key, referencing the id of
Species entities. Moreover, the WoRMS property of the
Species entity with identifier 126 has been copied to the
referencing protocol with identifier 903. �

In order to reliably recognize copy and move operations,
we need to be able to detect which inclusion dependencies
hold in the data. We therefore present and experimentally
evaluate an algorithm that addresses this challenge.
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Figure 1. NoSQL database instance with entities of type Species and Protocols.

Contributions: We make the following contributions:
• We present a three-step process to extract a sequence of

schema versions, rather than a global schema, from an
evolving data lake of hierarchical, heterogeneous data.

• We propose candidate mappings between schema ver-
sions, to restore the schema evolution history. A data
analyst may interactively resolve any ambiguities.

• We propose an algorithm that detects inclusion depen-
dencies in NoSQL data lakes.

• We evaluate our algorithm experimentally on data
derived from the MovieLens dataset, as well as a
customized dataset with botanical descriptions.
Furthermore, we explore edge cases that arise from
redundant data. We are able to show that with highly
redundant data, our algorithm does not scale well. We
then sketch our ideas for improving our algorithm in
this regard.

Structure. The rest of this article is organized as follows:
We introduce the preliminaries in Section II. The method
for extracting schema versions from evolving datasets is
introduced in Section III. To be able to propose evolution
operations between schema versions, we need to know which
inclusion dependencies hold. In Section IV, we introduce our
algorithm for deriving inclusion dependencies from NoSQL
data which we evaluated in Section V. In Section VI, we
sketch the idea of combining bottom-up and top-down search
for datasets which are rich in replicated data. In Section VII,
we review related work. We close with a summary and an
outlook on future work.

II. PRELIMINARIES

We first introduce some preliminaries on NoSQL data
collections, and then review a schema extraction algorithm
which we build upon [3].

An entity refers to a persisted object in a NoSQL database.
It carries a set of properties, each with a name and a value. A
value can be atomic (e.g., a string or numeric), or structured
(an object or an array). Structured properties can be nested.

For instance, in a document oriented NoSQL database such
as MongoDB, a JSON document constitutes an entity.

Entities with similar structure (typically generated by the
same object-oriented class in the application code) belong
to the same entity type. Depending on the NoSQL data
store and the overall software stack (e.g., the usage of an
object-NoSQL mapper), entities of the same entity type are
stored in the same NoSQL collection or bucket (in document
oriented NoSQL databases), or in the same table (in column-
family databases). Also, a dedicated property can explicitly
specify the entity type. Thus, we may safely assume that we
are always able to identify the entity type given an entity.

Example 2.1: In our example in Figure 1, we distin-
guish entities of type Species from entities of type
Protocols. If the database system is MongoDB, we may
declare MongoDB collections correspondingly. �

Our schema extraction approach from [3] captures implicit
structural information, such as property names, data types of
the values, and the nesting of objects. This yields a schema
which contains all structural variants of each entity type.

Example 2.2: For our running example, the JSON schema
extracted for Protocols is shown in Figure 2. �

The schema captures occurrence of each structural com-
ponent in a description property. In deriving a JSON schema,
we assume that the components which occur in all entities
are required, and optional otherwise.

Example 2.3: For our running example, line 22 of the
JSON schema in Figure 2 records that property WoRMS is
only available in one of the four Protocols entities. �

Overall, the JSON schema identifies regular structures,
statistics on the occurrence of properties, and identifies
structural outliers. However, the schema does not capture
the schema evolution history.

Example 2.4: The JSON schema in Figure 2 does not
reflect that property WoRMS was first introduced at time-
stamp 8, and has been part of the schema since then. �

This motivates us to extract schema versions, as discussed
in the next section.
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1 {"title": "Protocols",
2 "type": "object",
3 "properties": {
4 "id": {
5 "type": "number",
6 "description": "Occurrence: 4/4, 100%"},
7 "location": {
8 "type": "object",
9 "properties": {

10 "x": {
11 "type": "number",
12 "description": "Occurrence: 4/4, 100%"},
13 ...},
14 "required": ["x", "y", "z"],
15 "description": "Occurrence: 4/4, 100%"},
16 "spec_id": {
17 "type": "number",
18 "description": "Occurrence: 4/4, 100%"},
19 ...
20 "WoRMS": {
21 "type": "number",
22 "description": "Occurrence: 1/4, 25%"}},
23 "required": [ "id", "location", "spec_id",
24 "time", "ts"] }

Figure 2. JSON schema (excerpt) derived for sample Protocols.

III. EXTRACTING SCHEMA VERSIONS

In this section, we present our approach for identifying
consecutive schema versions, as well as operations for
translating one schema version into the next. A necessary
prerequisite is that each entity carries a timestamp, recording
the last write to this entity. This allows us to restore a partial
order of writes against entities. In fact, in our study of
open source and NoSQL-based applications [8], we could
observe that many software projects indeed maintain such
timestamps. In addition, NoSQL data stores typically use
timestamps or version numbers internally.

In describing our approach below, we further assume that
optional properties are encoded as null values or empty
values, rather than missing properties. This simplifies our
approach and reduces the number of ambiguities in the
mappings between schema versions. However, this is not
an inherent limitation, as our approach can be extended to
handle missing properties as well.

A. Schema Versions and Schema Evolution Operations

We extract schema versions and evolution operations in a
three-step process, as visualized in Figure 3.

(1) Structure Extraction: First, the entities types to be
analyzed are chosen, for instance, all entities of a database
or selected collections or tables.

Next, we load the chosen entities. Their structure is
summarized by schema version graphs. For each detected
entity type, a separate schema version graph is created. This
graph has a root node with the name of the entity type and
a list with the timestamps of all entities of this entity type.
The graph contains nodes for each property of the entity type
with information about the data types and the hierarchical

structure. The timestamps of all entities containing a certain
property are stored in the corresponding node. Thus, they
record in which time intervals certain structures occur.

Example 3.1: Figure 4 shows the schema version graphs
for our running example. Looking at the schema version
graph for entity type Species, the timestamp lists in the
property nodes reflect that property name occurred in the
entities with timestamp 1, 3, 5, and 7, and property WoRMS
in the entities with timestamp 5 and 7. Thus, this property
did not exist before timestamp 5. �

(2) Deriving schema evolution operations: We next de-
termine possible candidates for schema evolution operations.
We cover the set of schema evolution operations presented
in [9], comprising adding, deleting, and renaming properties
from all entities of an entity type, as well as copying and
moving properties between entities of different types.

Proposing schema evolution operations is the most chal-
lenging step of the process: First, all timestamp lists in each
node of the schema version graph are sorted. Afterwards,
we identify the structural differences between entities based
on the schema version graphs and the sorted timestamp
lists along the timeline. We can then derive the single-type
operations (add, delete, and rename), affecting properties of
the same entity type.

By comparing schema version graphs of different entity
types, we are able to detect multi-type operations that copy
or move properties between entity types.

Note that there may be alternative schema evolution
operations between two consecutive schema versions.

Example 3.2: In our example, we detect a new property
WoRMS in entity type Protocols at timestamp 8. This
structural change may have been caused by an add operation.
However, it may also have been caused by a copy operation,
originating from entity type Species and joining on the
Species id and Protocols spec_id. �

(3) Resolution of Ambiguities: In the last step, the al-
ternative schema evolution operations are resolved by a user.
Furthermore, in case of a copy or move, a join condition has
to be specified. For the time being, we apply a semiautomatic
approach which preformulates a join condition and leaves it
to the user to specify the join predicate.

Example 3.3: Continuing with the previous example,
only a data analyst with domain knowledge can disam-
biguate the situation. We therefore compile a decision table,
listing alternatives for the data analyst to choose from, as
discussed next. Figure 5 shows the decision table produced
by the Darwin tool. �

In Section IV we present our algorithm for deriving inclu-
sion dependencies, which allows us to disambiguate some
cases automatically. For instance, a copy or move operation
between entities of different types is unlikely when there are
no inclusion dependencies between the participating entity
types. After all, each copy or move operation requires a
join between the source and target entities, and inclusion
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Figure 3. Extracting schema versions and evolution operations.

(a) Schema version graph for entity type Species. (b) Schema version graph for entity type Protocols.

Figure 4. Schema version graphs for entity types Species and Protocols extracted from the entities in Figure 1.

Figure 5. Darwin screenshot: In the decision table, the data analyst
may interactively resolve ambiguous schema evolution operations and
supplement the join predicate.

dependencies typically hold for join properties.
As a result of this three-step process, we have restored a

plausible schema evolution history.
Example 3.4: For our example we derive four schema

versions and the corresponding schema evolution operations.
Figures 6 and 7 show relevant excerpts of the JSON schemas
for entity type Protocols in versions 3 and 4. The fol-
lowing schema evolution operation, specified in our syntax
from [9], transforms version 3 to version 4:

copy Species.WoRMS to Protocols.WoRMS
where Species.id = Protocols.spec_id �

B. Scalability

As NoSQL databases often back data-intensive applica-
tions, our approach must scale. In general, the time com-
plexity of the approach proposed above is O(n log n), due
to sorting timestamp lists in the schema version graphs.

For extracting the schema version graphs, our imple-
mented approach does not load the entire data instance into
main memory, but proceeds in batches.

However, in Step 2, the length of the timestamp lists may
become a critical factor with respect to memory limitations.
We therefore implemented an incremental approach as al-
ternative: Instead of extracting and analyzing the dataset
as a whole, we divide it into subsets that we process
incrementally. The division of the entity set into consecutive
ranges is based on the timestamps. First, we extract and
analyze the entities of the first subset. The decision table
is initially populated. After each step, we may discard all
information in the schema version graphs on the already
analyzed subset except information on the last schema
version. Afterwards, the process continues with the next
data subset. The decision table is sequentially updated after
processing a subset. Finally, ambiguities are resolved as
described above.

The drawback of this incremental method is that in Step 1,
data can no longer be loaded in arbitrary order. We have to
ensure that we process entities with consecutive timestamp
ranges. However, the time complexity remains in O(n log n),
so we may safely handle large volumes of data.

IV. INCLUSION DEPENDENCIES

Our main motivation for deriving integrity constraints is
to detect schema changes due to move or copy operations.
As in Example 3.4, these operations require a join between
entity types. By identifying inclusion dependencies in the
data lake, we are able to propose meaningful join conditions.
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{ "title": "Protocols",
"description": "schema version 3",
"type": "object",
"properties": {

"id": { "type": "number" },
"location": {

"type": "object",
"properties": {
...} },

"spec_id": { "type": "number" } } }

Figure 6. JSON schema (excerpt) for entity type Protocols in version 3.

{ "title": "Protocols",
"description": "schema version 4",
"type": "object",
"properties": {

"id": { "type": "number" },
"location": {

"type": "object",
"properties": {
...} },

"spec_id": { "type": "number" },
"WoRMS": { "type": "number" } } }

Figure 7. JSON schema (excerpt) for entity type Protocols in version 4.

In relational databases, inclusion dependencies are often
unary, consisting of only one attribute. Yet in working
with NoSQL databases, schema denormalization is common
practice. Redundancies are introduced intentionally, to work
around the limitations of the query languages supported
by NoSQL databases (such as no join operations in some
NoSQL database systems [6]).

We next propose an algorithm for deriving k-ary inclusion
dependencies. We start with the definition of these depen-
dencies for NoSQL data.

A. Definition

We extend the definition of inclusion dependencies from
the relational model [10] to NoSQL data. Given an entity e
and a property name P , we write e.P to obtain the value
of property P in this entity. For nested entities, we use the
dot-notation accordingly.

Definition 4.1: An inclusion dependency over entity types
E1 and E2 is an expression of the form

σ = E1[A1, . . . , Ak] ⊆ E2[B1, . . . , Bk],

where
• A1, . . . , Ak is a sequence of distinct properties of E1,
• B1, . . . , Bk is a sequence of distinct properties of E2.

Then a database instance I satisfies σ, denoted I |= σ, if

{〈e.A1, . . . , e.Ak〉 | e is an entity of type E1} ⊆
{〈e.B1, . . . , e.Bk〉 | e is an entity of type E2}.

In the special case that k = 1, we say an inclusion
dependency is unary. �

During the detection of inclusion dependencies, we distin-
guish three states: First, an inclusion dependency is known
to be valid, denoted E1[A1, . . . , Ak] ⊆ E2[B1, . . . , Bk] ac-
cording to the definition above. Second, it may be still
unknown whether an inclusion dependency holds, as it
has not been tested yet. We talk of inclusion depen-
dency candidates in this case, and denote this state as

E1[A1, . . . , Ak]
?
⊆ E2[B1, . . . , Bk]. Third, it can be known

that an inclusion dependency is not valid, which we denote
as E1[A1, . . . , Ak] ⊆/ E2[B1, . . . , Bk].

B. Basic Idea and Complexity

Inclusion dependency candidates have to be tested for
all subsets of properties of two entity types E1 and E2.
Let m1 be the number of properties in E1, and m2 the
number of properties in E2. The total number of candidates
for inclusion dependencies over entity types E1 and E2 is:

min(m1,m2)∑
k=1

m1!

(m1 − k)! ∗ k!
∗ m2!

(m2 − k)!
(1)

For the explanation of the formula, we use two concepts
from combinatorial analysis: variation1 and combination2.
The number of inclusion dependency candidates is the
number of all combinations of properties from E1 multiplied
with the number of all variations of properties from E2.

Example 4.1: Let us consider two entity types E1 and
E2, with the properties A1, A2 and B1, B2 respectively. For
finding the valid inclusion dependencies over E1 and E2,
we test the following candidates:

• The unary candidates E1[A1]
?
⊆ E2[B1], E1[A1]

?
⊆

E2[B2], E1[A2]
?
⊆ E2[B1], and E1[A2]

?
⊆ E2[B2].

• The binary candidates E1[A1, A2]
?
⊆ E2[B1, B2] and

E1[A1, A2]
?
⊆ E2[B2, B1].

Additional variations of the properties on the left-
hand side do not have to be tested (the candidates

E1[A2, A1]
?
⊆ E2[B2, B1] and E1[A2, A1]

?
⊆ E2[B1, B2]

are already covered by the binary candidates above). In our
example, this yields

2∑
k=1

2!

(2− k)! ∗ k!
∗ 2!

(2− k)!
= 6

different candidates. �
Formula 1 yields the number of inclusion dependencies

that have to be tested in the worst case. For each unknown in-
clusion dependency E1[A1, . . . , Ak]

?
⊆ E2[B1, . . . , Bk], we

1The variation is the ordered selection of k elements from a set of m
elements. It generates m!

(m−k)!
distinct results.

2The combination is the selection of k elements from a set of m elements.
In contrast to the variations, the order does not matter. The combination
generates m!

(m−k)!∗k! distinct results.
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have to test if all values from E1[A1, . . . , Ak] also occur in
E2[B1, . . . , Bk]. Let us capture the effort involved.

Let the number of entities of entity type E1 be n1, and let
the number of entities of entity type E2 be n2 accordingly.
We get the following worst case for the number of tests
required to derive inclusion dependencies.

(min(m1,m2)∑
k=1

m1!

(m1 − k)! ∗ k!
∗ m2!

(m2 − k)!
)
∗ (n1 ∗ n2) (2)

Evidently, a large number of properties impacts perfor-
mance. We also observe this effect in our experiments in
Section V.

We next introduce two rules which are the building blocks
of our algorithm. Given inclusion dependencies that are
valid, we can conclude that the inclusion dependencies for
subsets of properties are also valid. Let i < k, then

E1[A1, . . . , Ak] ⊆ E2[B1, . . . , Bk]⇒
E1[A1, . . . , Ai] ⊆ E2[B1, . . . , Bi]

∧ E1[Ai+1, . . . , Ak] ⊆ E2[Bi+1, . . . , Bk]. (3)

If we know that inclusion dependencies are not valid, we
can further conclude that the inclusion dependency for the
superset is not valid either:

(E1[Ai] ⊆/ E2[Bi]) ∨ (E1[Aj ] ⊆/ E2[Bj ])

⇒ (E1[Ai, Aj ] ⊆/ E2[Bi, Bj ])
(4)

Next, we introduce an algorithm which uses rules (3)
and (4) to prune the search space.

C. Algorithm

Our algorithm for detecting inclusion dependencies pro-
ceeds bottom-up, starting with unary inclusion dependencies.
Based on the unary inclusion dependencies found, the can-
didates for binary inclusion dependencies are tested next,
and so on, until the k-ary candidates are tested based on the
(k − 1)-ary inclusion dependencies.

For testing all k-ary inclusion dependency candidates, we
generate all combinations of properties for the left-hand
side (Ck(U1)) and all variations (Pk(U2)) of properties for
the right-hand side (as introduced in Formula 1). For the
purpose of our algorithm, we assume that Ck produces
tuples, preserving the order of the properties as syntactically
listed in U1.

For each inclusion dependency candidate (l
?
⊆ r), with

l = E1[A1, . . . , Ak] and r = E2[B1, . . . , Bk], we test if
the inclusion dependency holds. The idea is similar to the
well established apriori algorithm for mining association
rules [11]. Thus, in accordance with rule 4, a candidate for
a k-ary inclusion dependency is only tested when all (k −
1)-ary inclusion dependencies defined over subsets of the
properties are known to be valid. For this test, we introduce

Algorithm 1 Finding Inclusion Dependencies over Entity
Types E1 and E2

1: U1 = {properties of E1}
2: U2 = {properties of E2}
3: ID = ∅ /* inclusion dependencies */
4: k = 0
5: repeat
6: k = k + 1
7: changes = false
8: for all l ∈ Ck(U1) do
9: /* all k-ary combinations of properties from U1 */

10: for all r ∈ Pk(U2) do
11: /* all k-ary variations of properties from U2 */
12: apriori = true
13: for all i = 1, . . . , k do
14: if (subtuple(l, i), subtuple(r, i)) 6∈ ID then
15: apriori = false
16: break
17: end if
18: end for
19: if ((apriori) and tablescan(l, r)) then
20: ID = ID ∪ {(l, r)}
21: changes = true
22: end if
23: end for
24: end for
25: until (changes == false)

a function subtuple(t, i), that takes a k-ary tuple t and returns
a (k − 1)-ary tuple with all but the ith component.

The apriori condition in Algorithm 1, lines 12–18 is
similar to the apriori step for mining association rules: Only
candidates which satisfy the apriori condition are tested
during a tablescan. The tablescan for an inclusion depen-

dency candidate E1[A1, . . . , Ak]
?
⊆ E2[B1, . . . , Bk] tests for

each entity of type E1 whether the values for properties
A1, . . . , Ak match the property values B1, . . . , Bk of some
entity of type E2 (lines 19–22). If so, this function returns
that the inclusion dependency candidate is valid. Conse-
quently, it is added to the set of valid inclusion dependencies
ID. Each valid inclusion dependency is encoded as a pair
of tuples (l, r), containing the sequence of properties from
the left-hand side (l) and the right-hand side (r) of the
dependency.

The algorithm terminates when no new inclusion depen-
dencies can be found (lines 5, 7, and 25).

Example 4.2: Let us return to our running example: In
Figure 5, we have seen that an add or a copy operation
could have caused the data migration into the current schema
version. If we do not find an inclusion dependency over the
two entity types, we can settle on the add operation.

However, our algorithm detects the inclusion dependency
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Protocols[spec_id] ⊆ Species[id]. Thus, we are
able to identify a copy operation and its join condition
between these two entity types:

copy Species.WoRMS to Protocols.WoRMS
where Species.id = Protocols.spec_id �

D. Optimizations

All optimizations stated in the following exploit metadata
to avoid the expensive table scans. We evaluate these opti-
mizations experimentally in the upcoming section:

1) Smart iterator: The smart iterator is an optimization
over the brute-force bottom-up method. It does not
generate the k-ary candidates from all properties of
the NoSQL datasets, for testing the apriori condition.
Instead, it joins the valid k−1-ary inclusion dependen-
cies in ID to k-ary inclusion dependency candidates.
This can effectively reduce the number of candidates
for which we test the apriori condition.

2) Additionally, we may consider the datatypes of prop-
erties: We can ignore inclusion dependency candidates
if the datatypes of the properties on the left-hand side
and the right-hand side do not match.

3) Further, we may take into account metadata, such as the
minimum and maximum values of each property, when
the property value is atomic. This information can be
collected as part of schema extraction and allows us to
decide that an inclusion dependency does not hold, as
expressed in rule (5) below:
Let E1 and E2 be entity types. Let minA be the
minimum value of property A in all entities of type E1,
i.e. minA = min({e.A | e is an entity of type E1}).
Likewise, we define maxA, as well as minB and
maxB for the entities of type E2. Thus,

(minA < minB) ∨ (maxA > maxB)

⇒ E1[A] ⊆/ E2[B]. (5)

These three optimizations do not influence the number of
valid inclusion dependencies found. In all cases, we detect
all inclusion dependencies that are valid in the dataset. In
the upcoming section, we experimentally evaluate the impact
of these optimizations on the runtime.

V. EXPERIMENTAL EVALUATION

We now evaluate our approach for detecting inclusion
dependencies. Our experiments were run on an Intel Core
i7-461000U CPU @ 2.70GHz machine with 8.00 GB RAM.
The algorithm was implemented in Java. As a NoSQL
database, we use MongoDB version 3.4. We realize entity
types as MongoDB collections. All reported runtimes are
averaged over 10 runs.

In Subsection V-A, we evaluate the algorithm, as well
as the benefits of our optimizations on the MovieLens
dataset [12]. In Subsections V-B and V-C, we perform

Figure 8. The basic algorithm for finding inclusion dependencies and the
impact of optimizations for reducing the search space and runtime.

experiments with a dataset based on the iris dataset [13].
We have engineered this dataset to represent artificial edge
cases that reveal the limitations of our algorithm. We regard
these edge cases as rare, since they require highly duplicated
data between two entity types. Nevertheless, we consider it
worthwhile to understand the limitations of our approach.
We then propose optimizations motivated by the insights
gained from examining the edge cases in Section VI.

A. The Algorithm and its Optimizations

We use the MovieLens dataset to evaluate our algorithm
and to explore the benefits gained by the optimizations.
Originally, this is a relational dataset. We have migrated parts
of the MovieLens dataset into JSON documents.

The original benchmark contains a table with movie data
and another table linking movies to other movie databases.
Correspondingly, we have generated a MongoDB collection
movies with about 27,000 JSON documents. Each entity
has the properties movieId, title, and genres. The
MongoDB collection links also contains about 27,000
JSON entities with the properties movieId, imdbId, and
tmdbId. For each entry in movies there exists exactly
one entry in links. In the MovieLens dataset, the inclusion
dependencies movies[movieId] ⊆ links[movieId]
and links[movieId] ⊆ movies[movieId] hold.

Figure 8 shows the runtimes of four variants of the
algorithm. We see that the smart iterator (second bar) is an
improvement over the basic algorithm. In the third bar, we
see that additionally considering the datatypes of properties
improves the runtime further. The fourth bar shows the
additional improvement when we consider minimum and
maximum values.

The entities in the MovieLens dataset contain relatively
few properties. In the following, we experiment on datasets
that have been artificially engineered to be more challenging.
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Figure 9. Edge case: Deteriorating Runtime of the smart iterator algorithm
for 10 properties and 1,023 valid inclusion dependencies, increasing the
number of entities.

B. Edge Case: Increasing the Number of Entities in the
Presence of many Inclusion Dependencies

We next examine which characteristics of the input data
have an impact on the runtime. We make use of the iris
dataset which contains classifications of the iris plant family.
We have migrated this data into JSON format and extended
it to 600 entities with 10 properties each.

We duplicate the dataset to obtain two groups of entities,
and search for inclusion dependencies between both groups.
Due to these redundancies, we may identify 210−1 =1,023
valid inclusion dependencies. This includes unary, binary,
and up to 10-ary inclusion dependencies. We evaluate the
algorithm over datasets containing up to 600 entities.

Figure 9 shows the results for the smart iterator imple-
mentation. As expected, this scenario is challenging for our
algorithm, since we have 1023 valid inclusion dependencies
and the number of inclusion dependency candidates to
be tested is even higher. The runtime for checking each
inclusion dependency candidate is quadratic in the number
of entities.

C. Edge Case: High Number of Inclusion Dependencies

We next examine the impact of the number of valid
inclusion dependencies. Again, we modify the iris dataset:
We keep the number of entities fixed to 150 in both datasets.
We then run the algorithm with an increasing number of
properties that are identical between both datasets. The
number of inclusion dependencies grows accordingly: For
m identical properties, we obtain 2m − 1 valid inclusion
dependencies.

We evaluate the algorithm for 5 properties (31 valid in-
clusion dependencies), 8 (255 valid inclusion dependencies),
10 (1,023 valid inclusion dependencies), and 12 properties
(4,095 valid inclusion dependencies). For the last test, we
added further artificial properties into the dataset.

Figure 10 shows that the algorithm does not scale well
when the number of identical properties grows beyond 10.

Unfortunately, our optimizations from earlier are not
helpful in the presence of this many inclusion dependencies:

Figure 10. Edge case: Deteriorating runtime of the smart iterator algorithm
for 150 entities, increasing the number of properties and valid inclusion
dependencies.

If an inclusion dependency holds, applying the optimizations
adds additional tests, but does not reduce the search space.
For datasets with many valid inclusion dependencies, we
need different optimization ideas, as discussed next.

VI. OUTLOOK ON FURTHER OPTIMIZATIONS

Our experiments in Section V-C reveal that the bottom-
up approach for deriving all inclusion dependencies does not
scale when inclusion dependencies of arity 10 and higher are
involved. This motivates us to modify our approach.

When we have successfully detected the unary inclusion
dependencies in the bottom-up approach, we change our
strategy. Let k be the number of valid unary inclusion
dependencies found. Rather than testing the binary inclusion
dependency candidates next, we switch to a top-down search.
That is, we test the cover of all k valid unary inclusion
dependencies. If this k-ary inclusion dependency is valid,
we have effectively derived all inclusion dependencies be-
tween the datasets. Otherwise we can continue with k/2-ary
candidates, and continue in this manner.

In the scenarios portrayed by Figures 9 and 10, this
approach would reduce the number of inclusion dependency
candidates to be tested to the 10 unary candidates, and in the
next step the 10-ary inclusion dependency candidate. Thus,
we need to execute only 11 table scans in contrast to the
1,023 table scans of the bottom-up approach.

VII. RELATED WORK

Our work is related to various earlier contributions in both
database theory and applied research, ranging from schema
extraction to deriving integrity constraints from relational,
XML, and NoSQL data. Due to the long-standing history of
this research, our review can be by no means exhaustive. We
therefore focus on a sample of representative contributions.

Schema Extraction: Extracting a schema from data a
posteriori is an established research field. In the context of
this paper, we focus on schema extraction from semistruc-
tured or heterogeneous data. One of the first methods for
deriving DTDs from XML documents was suggested by
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Moh, Lim, and Ng in [14]. A graph datastructure captures all
structural variants. The graph can be translated to a schema
describing all heterogeneities of the input data. A similar
task is addressed in [15]. Bex et. al. give a comprehensive
survey over the extraction of DTDs and regular expressions
from XML documents. In both efforts, it is assumed that
all XML documents adhere to the same schema version.
Evolutionary changes over time, the topic of the present
paper, are not considered.

Recently, schema extraction for NoSQL data has gained
interest [1]–[5]. Again, these approaches extract a single
schema, and do not focus on schema changes over time.

Schema Extraction and Schema Evolution: The dif-
ferential snapshot algorithm from Labio and Garcia-Molina
[16] is an instance of an evolution-aware method for schema
extraction. Originally, this algorithm was developed for
supporting ETL processes in data warehouses. It matches
two snapshots of a data source and derives the changes
between these snapshots. The snapshots are assumed to be
lists of records, and each data source is handled separately.
The changes between two snapshots are described by the
operations add, delete, and update, which are single-type
operations that change one data source at a time.

However, this approach is designed for relational data
and therefore not immediately transferrable to our use case,
where we support a more complex data format. Additionally,
we focus on detecting denormalization tasks such as copy
and move operations between entities of different types.

Evolutionary changes to an XML schema are the focus
of [17] by Baqasah et al. Whereas most methods start by
analyzing XML documents, the XS-Diff algorithm receives
two schemas as input. The authors derive the changes
between XSD schemas in form of insert, update, delete,
and move operations. The move operation, in contrast to our
approach, is limited to moves along the element hierarchy,
within a single XSD. In contrast, we aim at detecting move
operations between different entity types, where we require
a value-based join (not an implicit structural join).

For NoSQL databases, Ruiz, Morales, and Molina propose
in [18] an approach based on model driven engineering
for inferring the schema of aggregate oriented NoSQL
databases. However, they only consider structural changes
affecting the same entity type. Multi-type operations, im-
portant in our context, are not supported.

Deriving Integrity Constraints from Data: Detecting
integrity constraints is vital for extracting a meaningful
schema. In database theory research, there have been various
studies on the feasibility of transferring decidability results
for integrity constraints from the relational model to XML
data. This concerns the concepts of keys (Buneman et. al.
in [19]), functional dependencies (Kot et. al. in [20]), and
foreign keys and thus, inclusion dependencies (Vincent et.
al. in [21]).

There is a range of commercial tools mining constraints

from relational databases. Most aim at deriving keys and
functional dependencies. In this article, we specifically focus
on inclusion dependencies. We therefore restrict our discus-
sion of related work to this class of integrity constraints.

Fajt et. al. mine integrity constraints in XML data [22].
They define keys and foreign keys for XML, and start with
the derivation of non-keys, which are easier and faster to
detect than keys. Then, based on the non-keys, all n-ary
keys are derived. To find a foreign key, the authors restrict
their approach to unary foreign keys, while we consider k-
ary inclusion dependencies. However, their restriction allows
them to parallelize the algorithm elegantly.

With increasing data volumes, the development of scalable
algorithms for deriving integrity constraints from relational
databases has gained interest. Papenbrock et. al. introduce
scalable methods for finding keys [23] and inclusion de-
pendencies [24]. In both contributions, the authors apply
sophisticated and efficient solutions for deriving all integrity
constraints that hold in relational datasets. Our own approach
differs in several aspects. First, we work on a different data
model and derive integrity constraints from NoSQL datasets.
We further use metadata (such as minimum and maximum
values) to detect invalid inclusion dependencies.

In [1], Farid et. al. find logical constraints in data lakes.
Based on an internal RDF format, they use directed hyper-
graphs for finding certain logical constraints in data as well
as violations of these constraints. Their motivating use case
is data cleaning.

Pruning the search space for inclusion dependencies by
considering types is also proposed from Bauckmann et. al.
in [25]. However, the authors of [25] argue that in scientific
databases, the types often cannot be trusted. This may also
hold true for generic data lakes, and it is up to the data
scientist to ascertain that the type information is reliable. For
this reason, we derive the actual datatypes from the NoSQL
data, to ensure that mixed types are also recorded in the
derived schema.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we focus on data gathering in data
lakes, managed in a schema-free or schema-flexible NoSQL
database. Even when the database itself does not enforce
a schema, data that is generated automatically (e.g., from
sensors or exported from data repositories), is likely to
adhere to a schema, even if this schema is not explicit.

However, when the data is being collected over long
periods of time, the schema is likely to change eventually.
In this work, we focus on restoring the schema evolution
history, since being aware of the evolution process is a
prerequisite for any meaningful data analysis: If the data lake
is accessed programmatically, yet without knowledge about
its structure, semantics, and history, the analytical results
may turn out to be rather useless.
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In particular, we highlight two key tasks, namely the
extraction of a sequence of schema versions (rather than a
single, global schema), as well as mappings between these
versions. We have a particular interest in recognizing non-
trivial changes due to copying or moving properties between
entity types, which are typical denormalization tasks in
handling NoSQL data stores.

This requires us to detect inclusion dependencies. We
have proposed a basic algorithm and several optimizations.
We have further evaluated our algorithm, and are able to
point out its strengths, as well as room for improvement. In
addition, we can execute this algorithm within Darwin, our
middleware for NoSQL schema management tasks.

In future work, we plan to move in two directions.
(1) First, in order to propose meaningful join conditions
for copy and move operations, we need not derive the
entire set of inclusion dependencies. A focus on inclusion
dependencies that are suitable for specifying join conditions
would effectively reduce the search space. (2) Moreover,
we intend to derive further kinds of integrity constraints, in
order to better describe the schema evolution history of data
lakes. Again, any algorithms will have to be able to handle
versioned, noisy, and complex structured NoSQL data.
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