Local Cohomology and Matlis duality — Table of contents

0 Introduction
1 Motivation and General Results .
1.1 Motivation . . . . . . . . . . . . o oo
1.2 Conjecture (*) on the structure of AssR(D(H?xl7___,%)R(R))) .
1.3 Regular sequences on D(H?(R)) are well-behaved in some sense
1.4 Comparison of two Matlis Duals .
2 Associated primes — a constructive approach
3 Associated primes — the characteristic-free approach .
3.1 Characteristic-free versions of some results
3.2 On the set ASSR(D(H(}im(R)fl(R)))
4 The regular case and how to reduce to it .
4.1 Reductions to the regular case .
4.2 Results in the general case, i. e. h is arbitrary . e e e e
4.3 The case h = dim(R) — 2, i. e. the set ASSR(D(H?);E.H,Xn—z)R(k[[Xl’ LX) -
5 On the meaning of a small arithmetic rank of a given ideal
5.1 An Example C e e e
5.2 Criteria for ara(I) <1 and ara(I) < 2
5.3 Differences between the local and the graded case
6 Applications
6.1 Hartshorne-Lichtenbaum vanishing .
6.2 Generalization of an example of Hartshorne .
6.3 A necessary condition for set-theoretic complete intersections
6.4 A generalization of local duality .
7 Further Topics
7.1 Local Cohomology of formal schemes . .
7.2 D(HY(R)) has a natural D-module structure

7.3 The zeroth Bass number of D(H4(R)) (w. 1. t. the zero ideal) is not finite in general .

7.4 On the module H? (D(H*(R)))
8 Attached prime ideals and local homology
8.1 Attached prime ideals — basics .
8.2 Attached prime ideals — results
8.3 Local homology and a necessary condition for Cohen-Macaulayness
8.4 Local homology and Cohen-Macaulayfications .
References

Summary in German (deutsche Zusammenfassung)

10

13
15
19
26
26
28
35
35
36
38
43
43
44
48
50
50
52
o4
%)
o7
57
o7
58
61
65
65
68
71
74
76
78



Local Cohomology and Matlis duality

0 Introduction

In algebraic geometry, a (set-theoretic) complete intersection is a variety Y (say, in affine or projective
space over a field) that can be cut out be codim(Y) many equations. For example, every curve in affine
n-space over a field of positive characteristic is a set-theoretic complete intersection (see [CN]). On the other
hand, many questions on complete intersections are still open: Is every closed point in P2Q (projective 2-space
over Q, the rationals) a set-theoretic complete intersection? Is every irreducible curve in A?é (affine 3-space
over C, the complex numbers) a set-theoretic complete intersection? See [Ly2] for a survey on these and
other questions.

Here is another example: Over an algebraically closed field k, let Cy C P? be the curve parameterized
by

(u?: ud o wwdt o?)

(for (u: d) € P}). Hartshorne has shown (see [Ha2, Theorem.*]) that, in positive characteristic, every curve
Cy is a set-theoretic complete intersection. In characteristic zero, the question is open. It is even unknown
if Cy4 is a set-theoretic complete intersection or not. An obvious obstruction for Cy to be a set-theoretic
complete intersection would be H3(R) # 0 (I C R = k[Xo, X1, X2, X3] the vanishing ideal of Cy C P%), but,
as is well-known, one has

H}(R)=0 .

Thus, if we define the so-called arithmetic rank of I,

ara(l) ;== min{l € N|3ry,...,m € R: VI =+/(r1,...,71)R} ,

it seems that (non-)vanishing of the modules H%(R) does not carry enough information to determine ara(I)
(because our example 5.1 shows that this can really happen in the sense that cd(I) < ara(l), where cd is
the (local) cohomological dimension of 7).

It is interesting that, although the vanishing of H3(R) does not seem to help in the case of Cy, the Matlis
dual D(H%(R)) (note that D will stand for the Matlis dual functor, also see the end of this introduction for
more notation) of the module H?(R) "knows” whether we have a set-theoretic complete intersection or not,

in the following sense (take h = 2):

(1.1.4 Corollary)

Let (R,m) be a noetherian local ring, I a proper ideal of R, h € N and f = fi,..., fn € I an R-regular
sequence. The following statements are equivalent:

(i) \/ﬁ = /1,1 e. Iis — up to radical — the set-theoretic complete intersection ideal fR; in particular, it
is a set-theoretic complete intersection ideal itself.

(ii) HY(R) = 0 for every | > h and the sequence f is quasi-regular on D(H}(R)).

(iii) HY(R) = 0 for every | > h and the sequence f is regular on D(H}(R)).

This result gives motivation to study modules of the form D(HY(R)), in particular its associated primes
(as they determine which elements operate injectively on D(H%(R))). Modules of the form D(H(R)) and
their associated prime ideals have been studied in [H2], [H3], [H4], [H5], [HS1] and [HS2].
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Main results

In the sequel we will list the main results of this work. In this context we would like to remark that conjecture
(*) (1.2.2) is a central theme of this work. We also remark that many of the results listed below (e. g. (1.2.1),
(2.7) (i), (3.1.3) (ii) and (iii), (3.2.7), (4.1.2), but also (8.2.6) (iii) (¢)) give evidence for it, though we are

not able to prove conjecture (*).

We also note that the results in this work lead to various applications. These applications are collected in

section 6, they are not listed here.

(1.2.1 Remark)

Let (R, m) be a noetherian local ring and z = x4, ...,z a sequence in R. Then one has

Assp(D(H{y, ..o, r(R))) € {p € Spec(R)| H{,, .. 0, r(R/P) # 0} .

Though easy, remark 1.2.1 is crucial for many proofs in this work; it seems reasonable to conjecture:

(1.2.2 Conjecture)

If (R, m) is a noetherian local ring, h > 0 and x4, ..., z, are elements of R,
(%) Assp(D(H{,, . 4 r(R))) = {p € Spec(R)|H{,, . ., r(R/P) # 0} .

Besides remark 1.2.1, there is more evidence for conjecture (*), e. g.:

(3.1.3 Theorem, statements (ii) and (iii))
Let (R, m) be a noetherian local ring, £ = 1, ..., z,, a sequence in R and M a finitely generated R-module.
Then

{p € Suppr(M)|z1, ...,z is part of a system of parameters of R/p} C Assg(D(H{;, . yr(M)))

holds. Now, if we assume furthermore that R is a domain and z is part of a system of parameters of R,
we have {0} € Assp(D := D(HJR(R))). Therefore, it is natural to ask for the zeroth Bass number of D
with respect to the zero ideal. V\?e will see that, in general, this number is not finite (theorem 7.3.2). In the
special case m = 1 we can completely compute the associated prime ideals: Namely, for every z € R, one

has
Assg(D(H,r(R))) = Spec(R) \ V(z)

(V(x) is the set of all prime ideals of R containing z). In particular, the set
Assp(D(H{z,, .,y r(R)))

is, in general, infinite. Here is further evidence for conjecture (*):

(3.2.7 Theorem)
Let (R,m) be a d-dimensional local complete ring and J C R an ideal such that dim(R/J) = 1 and
H%(R) = 0. Then

Assp(D(HY(R)) = {P € Spec(R)| dim(R/P) = d — 1,dim(R/(P + J)) = 0} U Assh(R)
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holds. Here Assh(R) denotes the set of all associated prime ideals of R of highest dimension. Further evidence
for (*) can be found in section 8.2 in connection with attached primes (see 8.2.6 (iii) (¢) for details).

We continue our list of main results on Matlis duals of local cohomology modules:

(4.1.2 Theorem)

Let (R,m) be a noetherian local complete ring with coefficient field k € R, I € Nt and z1,...,2; € R
a part of a system of parameters of R. Set I := (x1,...,7;)R. Let zj1,...,24 € R be such that
Z1,...,%q is a system of parameters of R. Denote by Ry the (regular) subring k[[z1,. .., 24]] of R. Then if
Asspg, (D(Hl(xl,...,acl)Ro (Ro))) is stable under generalization, Assg(D(H4(R))) is also stable under generaliza-

tion.

(A set X of prime ideals of a ring is stable under generalization, if p € X implies py € X for every pg C p.)
Clearly, 4.1.2 can be helpful when we want to reduce from a general (complete) to a regular (complete) case.

The next result shows that the question when H(Ihm(R)_l(R) is zero (for an ideal I in a local regular
ring R) is related to the question which prime ideals are associated to the Matlis dual of a certain local

cohomology module:

(4.3.1 Corollary)

Let Ry be a noetherian local complete equicharacteristic ring, let dim(Rg) =n—1, k C Ry a coefficient field
of Ry. Let x1,...,x, be elements of Ry such that /(x1,...,2,)Ro = mg. Set Iy := (x1,...,2,_2)Rp. Let
R := K[[X1,...,X,]] be a power series algebra over k in the variables Xi,..., X, I := (X1,...,X,,—2)R.
Then the k-algebra homomorphism R — R determined by X; — x; (i = 1,...n) induces a module-finite
ring map ¢ : R/fR — Ry for some prime element f € R. Furthermore, suppose that Ry is regular and
height(Iy) < h; then we have

fR € Assp(D(H}(R))) <= Hj, *(Ro) #0 .

In this case, fR is a maximal element of Assgr(D(H?(R))). By [HL, Theorem 2.9] the latter holds if and only
if dim(Ry/Io) > 2 and Spec(Ro/IoRo) \ {mo(Ro/IoRo)} is connected, where Ry is defined as the completion
of the strict henselization of Ry; this means that Ry is obtained from Ry by replacing the coefficient field k

by its separable closure in any fixed algebraic closure of k.

It was shown in [Lyl, Example 2.1. (iv)] that every local cohomology module H%(R) has a natural
D-module structure, where
D := D(R,k) C Endi(R)

is the subring generated by all k-linear derivations (from R to R) and the multiplications by elements of R
(here k C R is any subring). We show in section 7.2 that, at least if R = k[[X1,...,X,]] is a formal power
series ring over k, the Matlis dual

D(H}(R))

has a canonical D-module structure, too (for every ideal I C R); furthermore, we will see that, with respect
to this D-module structure, D(H%(R)) is not finitely generated, in general; in particular, it is not holonomic
(see [Bj, in particular sections 1 and 3] for the notion of holonomic D-modules).

We will use the D-module structure on D(H%(R)) to show
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(7.4.1 and 7.4.2 Theorems (special cases))
Let (R,m) be a noetherian local complete regular ring of equicharacteristic zero, I C R an ideal of height

h > 1 such that H;(R) = 0 for every | > h, and = x4, ..., ), an R-regular sequence in I; then, in general,
H} (D(H} (R)))

is either Er(R/m) or zero; if we assume
I = (1‘1,...,$h)R

in addition, we have
H(D(H}(R))) = Er(R/m) .

Further main results of this work are contained in section 6, in which we collect various applications of
our theory, namely new proofs for Hartshorne-Lichtenbaum vanishing (6.1), a generalization of an example of
a non-artinian but zero-dimensional local cohomology module (the original example, which is more special,
is from Hartshorne) (6.2), a new necessary condition for an ideal to be a set-theoretic complete intersection

ideal (6.3) and a generalization of local duality (6.4).
Notation

If T is an ideal of a ring R and M is an R-module, we denote by HlI(M ) the I-th local cohomology
of M supported in I; material on local cohomology can e. g. be found in [BH], [BS], [Gr] and [Hu]. If
(R, m) is a noetherian local ring, Eg(R/m) stands for any (fixed) R-injective hull of the R-module R/m; see,
for example, [BH| and [Ms] for more on injective modules. Finally, D is the Matlis dual functor from the

category of R-modules to itself, i. e.
D(M) = HOIHR(M, ER(R/m))

for every R-module M. The term ”Matlis dual of M” will always stand for D(M) (and therefore, will only
be used over a local ring (R, m)). Sometimes we will write Dp instead of D to avoid misunderstandings.
References for general facts from commutative algebra are [Ei], [Mal.

Acknowledgement

I thank Jiirgen Stiickrad and Gennady Lyubeznik for many helpful discussions.



1 Motivation and General Results

1.1 Motivation

Let I be an ideal of a noetherian ring R.

ara(I) := min{l € N|3z1,..., 2 € [ : VI =/(x1,...,2)R}

denotes the arithmetic rank of I. Geometrically, it is the (minimal) number of equations needed to cut out
a given algebraic set (say, in an affine space). It is well-known (and follows by using Cech-cohomology) that
one has

HY(R) =0 (I > ara(I)) .

But, conversely, it is in general not true that ara(I) is determined by these vanishing conditions, see Example
5.1 for a counterexample. Assume that I is generated up to radical by a regular sequence f = fi,..., fu
in R. Then f is also a regular sequence on D(HY(R)) (this follows from theorem 1.1.2 resp. corollary 1.1.4
below, see definition 1.1.1 below for a definition of regular sequences in this context). It is an interesting

fact that the reversed statement also holds: If f is a D(HY(R))-regular sequence then

=i

holds. This fact is one of the main motivations for the study of Matlis duals of local cohomology modules

(see theorem 1.1.3 resp. corollary 1.1.4 for details and the precise statement).

1.1.1 Definition
Let R be a ring, M an R-module, h € N and f = fi,..., fs a sequence of elements of R. f is called a
quasi-regular sequence on M if multiplication by f; is injective on M/(f1,..., fi—1)M for every i = 1,..., h.

[ is called a regular sequence on M if f is quasi-regular on M and M/fM # 0 holds, in addition.

Before we show the statements on regular sequences mentioned in the introduction of this section (corollary
1.1.4), we prove something slightly more general (namely theorems 1.1.2 and 1.1.3); corollary 1.1.4 then

simply combines the most interesting special cases from these two theorems.

1.1.2 Theorem
Let (R, m) be a noetherian local ring, I an ideal of R, h > 1 and f = f1,..., fp € I a sequence of elements

such that \/fR = VT and
H R/ (fri f)R) =0 (1=0,...,h = 3)

hold (of course, for i < 2, this condition is void). Then f is a quasi-regular sequence on D(H}(R)).
Proof:

By induction on h: h = 1: the functor H} is right-exact because H? = H?cl r = 0. Hence the exact sequence

RLER-R/AR—0
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induces an exact sequence
f
Hi(R) = H}(R) — H;(R/fiR) = H}, r(R/fiR) =0

(here f1 stands for multiplication by fi; on R resp. H}(R)). Application of D to the last sequence yields
injectivity of fi on D(H}(R)).

h = 2: We have H?(R/f1R) = H%fl,fQ)R(R/flR) = 0 This implies both H, (M) = 0 for every | > 2 and every
R/fiR-module M and the fact that f; operates injectively on D(H2%(R)). Now the exact sequence

0—-(0:rfi) RS fIR—0

(where « is induced by multiplication by f1) induces an exact sequence

H2((0 5 f1)) — HA(R) "2 H2(f1R) — 0 .

But (0 :z fiR) is an R/f; R-module and so H2((0 :g fiR)) = 0, showing that H?(«) is an isomorphism. On
the other hand the exact sequence
0— ARZER - R/AR—0

(where 3 is an inclusion map) induces an exact sequence

HYR/AR) — H2(AR) "1 12(R) -0,

which shows the existence of a natural epimorphism

H;(R/fiR) — ker(H7(8))
= ker(H7(8) o Hi ()
= ker(H7(f 0 )
= ker(f1) ,

where fi denotes multiplication by fi on H?(R). This means that we have a surjection
Hj(R/fiR) — Homg(R/f1 R, Hj(R))
and hence an injection
D(H}(R))/fiD(H](R)) = D(Homp(R/ fi R, H}(R))) — D(H;(R/fiR)) -

Note that the first equality follows formally from the exactness of D; note also that it does not make any
difference if one takes the last Matlis dual with respect to R or R/ f; R. For this reason the case h = 1 shows
that fo operates injectively on D(H}(R/f1R)) and thus also on D(H2(R))/fi1D(H?(R)).

Now we consider the general case h > 3: Similar to the case h = 2 we see that HlI(M) =0 for every I > h
and every R/f; R-module M and that f; operates injectively on D(H?(R)). The short exact sequence

0—-(0:rfi) RS fIR—0

(where, again, « is induced by multiplication by f; on R) induces an exact sequence

H(0 5 £1) — HE(R) " 1 (LR) — 0.
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But (0:x f1) is an R/f; R-module and therefore H?((0 :r f1)) = 0, showing that H/(a) is an isomorphism.

On the other hand the short exact sequence
0—fARZR—R/fIR—0

(where 3 is an inclusion map) induces an exact sequence

_ _ HY(8)
0=H!"YR) - HY Y(R/AR) — HY(AR) 57 HY(R) — 0

(here we use the fact that h > 3 and therefore H?~*(R) = 0). We conclude

H; ' (R/fiR) = ker(H}(8)) = ker(H7 (8) o H () = Homp(R/ f1 R, Hf (R))
and, by Matlis duality,

D@} !(R/fiR)) = D(Homg(R/ f1 R, H}(R))) = D(H}(R))/ f1D(H} (R)) -

Because of our hypothesis, we can apply the induction hypothesis (to the ring R/fiR) which says that
fa,..., fn is a quasi-regular sequence on D(H?il(R/flR)); thus, by the last formula, f is a quasi-regular
sequence on D(H?(R)).

1.1.3 Theorem
Let I be an ideal of a noetherian local ring (R, m), h > 1 and f1,..., fn € I be such that

HY(R)=0 (I>h)

and
H YR/ (fry o, I)R) =0 (1=0,...,h —2)
hold (of course, for h < 2, this condition is void) and such that the sequence f = f1,..., f4 is quasi-regular
on D(H}(R)). Then VT = /(f1,.-., fn)R holds.
Proof:

By induction on h: h = 1: By our hypothesis, the functor H} is right-exact. Therefore the exact sequence
RER-R/AR—0

induces an exact sequence

HH(R) & HH(R) — HY(R/FiR) — 0 |

where f; stands for multiplication by f; on R resp. on H(R). But multiplication by f; is injective on
D(H}(R)) and so we get H}(R/f1R) = 0; by our hypothesis, we have H;(R/fiR) = 0 for every [ > 1. It is
well-known that the latter condition is equivalent to H;(R/p) = 0 for every | > 1 and every prime ideal p of

V(fiR) := {p € Spec(R)|fiR C p} .

Thus, we must have I C v/fi R and, therefore, VT = \/f1R.
h > 2: Similar to the case h = 1 we see that H?(R/f1R) = 0 holds. By our hypothesis, we get H, (M) = 0
for every | > h and every R/ f;R-module M. The short exact sequence

0—>(O:Rf1)—>R3>f1R—>O
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induces an exact sequence

HY(0 5 £1) — HE(R) "L 0 (FR) — 0

But H?((0 :r f1)) = 0, because (0 :g f1) is an R/fiR-module. Thus H?(«) is an isomorphism. Now the
short exact sequence
0— ARZL R R/AR—0

(where 3 is an inclusion map) induces an exact sequence

HY} (8)
(f

0=H}"(R) = H} "(R/AR) — H} (/1R) H}(R) -0 ,

from which we conclude

“H(R/fiR) = ker(H](8)) = ker(H] (8) o H} (o) = Homp(R/ LR, H} (R)) -

Here we used the facts the H? () is an isomorphism and that 3o« is multiplication by f; on R. Application

of the functor D shows
D(H7 '(R/f1R)) = D(H}(R))/ /iD(H}(R)) .

Note that, again, it is irrelevant whether we take the first functor D here with respect to R or with respect
to R/f1R and so our induction hypothesis (applied to R/fiR) implies that fo,..., fr is a quasi-regular
sequence on D(H} ' (R/f1R)) and that

VI(R/fiR) = \/(fa, ..., fa) - (R/fR)
holds. The statement T = \/(f1, ..., fn)R follows.

Now it is easy to specialize to the following statement:

1.1.4 Corollary
Let (R,m) be a noetherian local ring, I a proper ideal of R, h € N and f = fi,..., fy € I an R-regular
sequence. The following statements are equivalent:
() /TF = VI.
(ii) HY (R ( ) = 0 for every | > h and the sequence f is quasi-regular on D(H}(R)).
(iii) HY(R) = 0 for every [ > h and the sequence f is regular on D(H/(R)).

(The case h = 0 means

VI =10 < H}Y(R) =0 for every [ >0
<= HY(R) =0 for every I >0 and T';(R) #0 ).

Proof:

h = 0: Clearly the condition v/I = v/0 implies H}(R) = 0 for every [ > 0. On the other hand, if we have
H}(R) = 0 for every | > 0, then, by a well-known theorem, one also has H,(R/p) = 0 for every prime ideal p
of R and for every [ > 0; thus I C p for every prime ideal p of R. But then it is also true that I';(R) = R # 0
holds.

h >1: The fact that (i) and (ii) are equivalent follows from theorems 1.1.2 and 1.1.3. Thus we only have to
show that (i) implies

D(H}(R)/(f1,-- -, fn) D(H}(R))) # 0
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But, by general Matlis duality theory, the last module is

D(Hompg(R/(f1,-.., fn)R.H}(R))) ;

furthermore, every element of H/(R) is annihilated by a power of I and so it suffices to show H?(R) # 0,

which is clear, because [ is generated up to radical by the regular sequence f1, ..., fa.

1.2 Conjecture (*) on the structure of ASSR(D(H?QM,...,xh)R(R)))

Now, we present an easy property of associated primes of Matlis duals of certain local cohomology modules;
this property will naturally lead us to a conjecture on the structure of the set of associated prime ideals of

such modules.

1.2.1 Remark
Let (R,m) be a noetherian local ring, M an R-module, h € N and I C R an ideal such that H,(M) = 0
holds for every [ > h and suppose that we have

p € Assp(D(H] (M)))

This condition clearly implies Anng(M) C p (because Anng(M) is contained in the annihilator of every
element of D(H?(M))) and
0 # Homp(R/p, D(H}(M)))
R (

= D(H} (M) ®r (R/p))
= D(H}(M/pM))
i. e. H}(M/pM) # 0. In particular dim(Supp (M /pM)) > h.

As a special case we get the implication

pE AssR(D(H?M,_A,J,L)R(R))) = dim(R/p) > h

for every sequence z1, ...,z € R.

Furthermore, as we have seen,
Assp(D(HE,, . opyr(R)) € {p € Spec(R)|H{,, . 4 r(R/P) # 0}
holds for every sequence z1,...,z, € R.

1.2.2 Conjecture

If (R, m) is a noetherian local ring, h > 0 and x4, ..., 2, are elements of R,
(+) Assp(D(H{,,, . 2r(R)) = {p € Spec(R)| H{,, ., r(R/P) # 0}

holds. We denote this conjecture by (*). It is one of the central themes of this work. The next theorem 1.2.3
presents some equivalent characterizations of conjecture (*); one of them is stableness under generalization
of the set of associated primes of the Matlis dual of the local cohomology module in question (condition (ii)

from theorem 1.2.3). The theorem also shows (condition (iv)) that (*) is actually equivalent to a similar
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statement, where R is replaced by a finite R-module M, i. e. if (*) holds, a version of (*) also holds for

finite R-modules.

1.2.3 Theorem
The following statements are equivalent:
(i) Conjecture (*) holds, i. e. for every noetherian local ring (R, m), every h > 0 and every sequence

Z1, ...,z of elements of R the equality

Assp(D(H{,, .. 0, r(R))) = {p € Spec(R)| H{;, 4, r(R/P) # 0}

holds.

(ii) For every noetherian local ring (R, m), every h > 0 and every sequence z1,...,z, of elements of R the

set

Y = Assp(D(H(,, . (R)))

is stable under generalization, i. e. the implication
o, P1 € Spec(R),po Cp1,p1 €Y = po €Y

holds.
(iii) For every noetherian local domain (R, m), every h > 0 and every sequence x1,...,x, of elements of R

the implication

H{,, oy (R) # 0= {0} € Assp(D(H{,, . ., r(R)))

holds.

(iv) For every noetherian local ring (R, m), every finitely generated R-module M, every h > 0 and every
sequence 1, ...,z of elements of R the equality

(1) Assa(D@EL, (M) = {p € Suppp(M)|HL, . p(M/pM) # 0}

holds.

Proof:

First we show that (i) — (iii) are equivalent. (i) = (ii): In the given situation we have

Hompg(R/p1, D(H[,, . 4yr(R)) #0 ;

.....

this implies
0 # Homp(R/po, D(H{,, .. 4 r(R)))
= HomR(H&l,wzh)R(R) ®r (R/po), Er(1}/m))
ZD(H?M,...,M)R(R/PO)) .
Thus conjecture (*) implies that pg is associated to D(H?zl,“.,a:h)R(R))'
(ii) = (iii): We assume that H?xl,...,zh,)R(R) # 0. This implies D(H&,hm@h)R(R)) # 0 and hence
Assp(D(H, . #(R))) # 0; now (i) shows {0} € Assp(D(HL,, . | (R))).

(21, (Z1,5eees
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(iii) = (i): We have seen above that the inclusion C holds; we take a prime ideal p of R such that
H?xl yr(£/p) # 0 and we have to show p € Assgp(D(H! enyr(12))): We apply (iii) to the domain R/p

,,,,, Tp (150
and get an R-linear injection

R/p — D(H{,, . any(r/p) (B/P))
= Hompg(H{,, . 4)r(R/P), Er(R/m))
— Homa(tlly, o n(R) @1 R/p, En(R/p)
= Homp(R/p, D(H(,, ... 4,)r(R)))
C D(H{y, ..o r(R)) -
Note that we used H?xl,...,mh)(R/p)(R/p) = H'(me1

R/p-injective hull of R/m.
Now it is clearly sufficient to show that (i) implies (iv): C: Every element p of the left-hand side of identity

enyr(B/p) and the fact that Homp(R/p, Er(R/m)) is an

.....

(1) must contain Anng (M) and hence is an element of Suppy(M); furthermore it satisfies

0 # Hompg(R/p, D(H{,, . 4, r(M)))
= Hompg(R/p ©r H{y, .. uyr(M), Er(R/m))
= D(H?xl,,zh)R(M/pM)) .

D: Let p be an element of the support of M such that H'(LLI1 ,,,,, Ih’)R(M/pM) is not zero. We set R :=
R/ Anng(M), M is an R-module. p D Anng(M), we set p := p/ Anng(M). Clearly our hypothesis implies

that H” h)ﬁ(ﬁ) # 0. We apply (i) to R and deduce

(z1,...,x

p € Assp(D(H(,, . =(R) .

(ml,..

Hence there is an R-linear injection

0~ Rfp=FfF— DM, =(R) .

(1,

which induces an R-linear injection

0 — Hompg (M, R/p) — Homp (M, D(Hzml,...,zh)ﬁ(ﬁ)))
= Homp(M, D(H{,, . =(R)))
_ h
- D(H(ml,...,xh)E(M))

= D(H{s, . anr(M)) -

Note that for the second equality we have used Hom-Tensor adjointness and for the last equality the facts
that M is an R-module and that Homg (R, Eg(R/m)) is an R-injective hull of R/m; It is sufficient to show
p € Assgp(Hompg(M, R/p)); but M is finite and so we have

(Homg(M, R/p)), = Homp, (M, Ry /pR,) #0
which shows that pR,, is associated to the Ry,-module (Hompg (M, R/p)),. Thus p € Assp(Hompg(M, R/p)).

1.2.4 Remark

In [HS1, section 0, conjecture (+)] more was conjectured, namely:
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If (R, m) is a noetherian local ring, h > 1 and 1, ...,z is a sequence of elements of R, then all prime ideals
p maximal in Assg(D(H]

(@15emn

enyr(1)))) have the same dimension, namely dim(R/p) = h.

This conjecture is false, here is a counterexample:
Let Q denote the rationals and R = Q[[X1, X2, X3, X4, X5]] a power series algebra over Q in the variables
Xl, .. .,X5. Set h = 3 and T = Xl,(EQ = X2,$3 = X3 Then

pi=—XoXi + X3 Xy X5 — X1 X2 +4X, X, — X5 € R

is a prime element of R; in fact, pR is a maximal element of Assz(D(H" (R))), but dim(R/fR) =

(xz1,x2,23)R
4 # 3. These statements will be proved in remark 4.3.2 (ii), here we explain where f comes from:

We define a ring
S = Q[[yh Y2,Y3, y4]]

and a module-finite Q-algebra homomorphism
f:R— S
such that

F(X1) = yiys, f(X2) = yoya, [(X3) = v1ya + yoya, [(Xa) = y1 +y3, f(X5) =y2 +ya) -

As we will see in remark 4.3.2 (ii), pR is the kernel of f; the crucial point here is that the radical of the

extension ideal of (x1,x2,z3)R in Ry is

Ip = (y1,y2)Ro N (y3,y4)Ro

and H?U (Rp) # 0, although Ij has height two (again, see section 4.3 and, in particular, remark 4.3.2 (ii) for
details).

1.3 Regular sequences on D(H"(R)) are well-behaved in some sense

Obviously we are dealing here with the notion of regular sequences on modules which are, in general, not
finitely generated. Such regular sequences do not have all the good properties of regular sequences on finite
modules. However, in our situation, some kind of well-behavior holds, here is the idea (see theorem 1.3.1
below for the precise statement): For finite modules, the following is well-known: If (R, m) is a noetherian

local ring, M a finite R-module and r1,...,7r, € R an M-regular sequence then rf,...,7} € R is also an M-

regular sequence provided \/(r7, ..., 7} )R = \/(r1,...,r;)R holds (because R is local). In our case, if (R, m)
is a noetherian local ring and I C R an ideal of R such that H;(R) # 0 <= [ = h holds, it is clear that if an
R-regular sequence 71,...,7, € I is a D(H?(R))-regular sequence then an R-regular-sequence 7}, ...,7, € I
is also D(H}(R))-regular if \/(r},...,7} )R = \/(r1,...,7)R holds (simply because of \/(r7,..., 7} )R = VT

and corollary 1.1.4). But a more sophisticated statement is also true:

1.3.1 Theorem

Let (R, m) be a noetherian local ring, h > 1 and I C R an ideal such that H,(R) # 0 <= [ = h holds.
Furthermore, let 1 < A’ < h and let r1,...,7, € I be an R-regular sequence that is also D(H?(R))-regular.

13



Furthermore, let r{,...,r}, € I be such that \/(r{,...,7},)R = \/(r1,...,7»)R holds. Then r{,...,7},

is a D(H?(R))-regular sequence. In particular, any permutation of 71, ..., 7, is again a D(H}(R))-regular
sequence.

Proof:

R is local, and thus it is clear that 7{,...,r}, is an R-regular sequence. By induction on s € {1,...,h'} we

show two statements:
HlI(R/(rlw",rs)R) %0 <— l=h-s

and
D(H}™*(R/(r1,...,7s)R)) = D(H}(R))/(r1,...,7s) D(H}(R))

s = 1: The short exact sequence
0—-RZ5R—-R/MR—0

induces a short exact sequence
0 — H} " (R/mR) — H}(R) & H}(R) — 0

and we conclude, therefore, that
HY(R/rR)#0 < I=h—1

holds. Now, the statement
D(H; (R/rR)) = D(H}(R))/r D(H} (R))

follows from the exactness of D.

s > 1: The short exact sequence
0—R/(r1,...,7s-1)R3 R/(r1,...,7s—1)R — R/(r1,...,7)R — 0
induces, by our induction hypothesis, an exact sequence
0— HY*(R/(r1,...,r)R) — Hy “"(R/(r1,...,r-)R) B H V(R (1. .., re—1)R) .
By induction hypothesis,
D] TV (B (1. ra) B) = DR/ (11, reet) D (R))
and so, by assumption, r; operates surjectively on H?_(s_l)(R/(rl, ...,Ts—1)R) and we get
HY(R/(r1,...,7s)R) #0 < l=r—s

and

DHE"(R/(r1,...,rs)R)) = DH""“"V(R/(r1,...,74_1)R))/rsDH""""V(R/(r1,...,7_1)R))
=DH}(R))/(r1,...,rs)DH}(R)) .

In particular for s = I/ we have
HY(R/(r1,...,r)R) #0 < I=h—h .

14



Note that, because of
depth(I, R/(r1,...,7n)R) = depth(I, R) — h' = depth(I, R/(r},...,7},/)R)
and
Suppgr(R/(r1,..., 7 )R) = Suppg(R/(r}, ..., )R

this implies
(1) HY(R/(r},..., 1 )R) #0 < I=h—h

(the depth-argument shows vanishing for I < h — h’ and the Supp-argument shows that h — h’ is the largest
number such that H;(R/(r},...,7},)R) # 0). Now, by descending induction on s € {0,...,h — 1}, we will

prove the following three statements:

7! 1 operates surjectively on H} *(R/(r},...,7.)R) ,

H}Ilfl(R/(rll,...,r;)R) £0 <= l=5s

and
Dy TR/ (... 7 )R)) = DHE(R/(r}, ..., r.)R)) /.y DI (R/(r), ..., 7})R))

s = h' — 1: We consider the long exact I';-sequence belonging to the short exact sequence

0— R/(r,,....7h )RS R/(#,.... 7 )R — R/(r,,..., 7} )R — 0

Then, the surjectivity of r}, on H}}_(h/_l)(R/(r’l, ...,Th,_1)R) follows from (1) and the other statements

from the fact that for [ # h — (b’ — 1) we have injectivity of r}, on Hy(R/(r},...,7,,_;)R), hence
HlI(R/(Tlla LERE T;L’—I)R) =0

as 1y, € 1.
s < I/ —1: We consider the long exact I'j-sequence belonging to the short exact sequence

’
T

0— R/(r},...,7 )R ¥ R/(ry,...,T.)R— R/(r},..., 74 1)R—0

!
S

Then, our induction hypothesis shows that multiplication by 7/, is surjective on H}~*(R/(rf,...,7%)). Like
before, the two other statements follow from the fact that, for [ # h — s, multiplication by 7, is injective
on Hy7H(R/(r,...,7")) and so HP Y (R/(r},...,r.)) is trivial. Tt is clear that these three statements prove
the theorem (in fact, the first and the third statement are sufficient here, the second is used for technical

reasons).

1.4 Comparison of two Matlis Duals

For a noetherian local ring (R, m), the Matlis dual functor clearly depends on R. In this section we will have
a local subring Ry of R. Given any local cohomology module over R, we will take its Matlis dual both with

respect to R and with respect to Rpy; both are R-modules in a natural way. Among other results, in this
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section we will see that, under certain assumptions, these two Matlis duals have the same set of associated

prime ideals (over R, see 1.4.3 (ii)).

Let (R,m) be a noetherian local equicharacteristic complete ring with coefficient field k and let y,...,y;
be a sequence in R such that Ry := k[[y1,...,y;]] is regular and of dimension 4 (this is true, for example,
if Héyh__”yi)R(R) = 0 holds, as this local cohomology module agrees with H’éy17<~~7xi)R0(R0) ®g, R; also note
that Ry is, by definition, a subring of R). Let Dg denote the Matlis-dual functor with respect to R and Dpg,
the one with respect to Ry. By local duality (see e. g. [BS, section 11] for a reference on local duality), we

get

D, (H{ yr(R)) = Hompg, (R ®r, H,, )k, (Ro) Er,(k)) = Homg, (R, Ro) .

Yi5--0Yi

Hompg, (R,ERg,(k)) is an injective R-module with non-trivial socle; therefore, there exists an injective R-
module E’ such that
Homp, (R, Er, (k) = Er(k) & £’

holds. We set B =T'(,, ., r(E’). We have

Dry(Hly, . yor(R) =Hompg,(H{,, ., r,(Ro) ®r, R, Er,(k))
= Hompg, (H{,, . r,(Ro), Homg, (R, Eg,(k)))
= Homp (R @g, Hiy, .y, 5, (Ro), Homp, (R, Er, (k)))
= HomR(HéylW’yi)R(R)7 Er(k)® E")
= Dr(H{,, ., r(R)) ®Homg(H{, , r(R),E)
= Dr(H{,, .. yhr(R)) ® Homg(H{,, . r(R),E)

and hence
(1) Ase(Dry(H},, . e(R) = Assn(Dr(Hj,, ., (7)) U Assa(Homn(H},, ) e(R), E)) -

It is natural to ask for relations between DR(Hz('yl__“ yor[Y)) and Dg, (Héy1 ynr(R)); we will establish

some in the sequel:
For every p € Z := {p € Spec(R)|(y1,.-.,yi)R C p C m} we choose a set y, such that

E = P Er(R/p)")

peZ

holds.

1.4.1 Remark

In the above situation, one has p, # 0 for every p € Z.

Proof:

We have to show that p is associated to the R-module Homp,(R/p,Eg,(k)). The latter module is equal to
Homp, (R/p, k), because p is annihilated by yi,...,y; (note that k is the socle of Eg,(k)). Thus we have
to prove the following statement: If (R, m) is a noetherian local equicharacteristic complete domain with
coefficient field k, then the zero ideal of R is associated to the R-module Homy (R, k):

16



Let 21,...,2, € R be a system of parameters for R, n := dim(R). Then Ry := k[[z1,...,2,]] is a regular
subring of R, over which R is module-finite. One has Homy (R, k) = Hompg, (R, Homy(Rg, k)) and, therefore,

it is sufficient to prove {0} € Assg,(Homy(Ro, k)), because in this case, every Rp-injection
RO - HOHlk(RO, k)

induces an R-injection
Hompg, (R, Ry) — Homy (R, k)

and {0} € Suppg(Hompg, (R, Ro)) holds, because R is finite over Ry. Thus we may assume R = k[[x1, ..., 2,]]
from now on:

Fori=1,...,n we set R; := k[[z1,...,2;]]. Again we have

Homk (Ri, ]f) = HOHIRF1 (Rl, Homk(Ri_l, ]f))

for i = 2,...,n. Using this and an obvious induction argument, the statement follows from lemma 1.4.2
below.
1.4.2 Lemma

Let k be a field and let Ry := k[[X1,...,Xy]], R := k[[X1,..., X, X]] = Ro[[X]] be power series rings in
the variables X1,..., X,, X, respectively. Then

{0} € Assg(Homp, (R, Ry)) -

Proof:

By my we denote the maximal ideal of Ry. The canonical short exact sequence
0 — Ro[X] — Ro[[X]] = Ro[[X]]/Ro[X] — 0
induces an exact sequence
0 — Hompg, (Ro[[X]]/Ro[X], Ro) — Hompg, (Ro[[X]], Ro) = Hompg, (Ro[X], Ro) -
The map « is the Matlis dual (in the sense that
Homp, (Hy, (Ro[X]), Er, (k) = Hompg, (Ro[X] ®r, Hyy, (Ro), Er, (k)) = Hompg, (Ro[X], Ro)
and
Hom g, (Hyy, (Ro[[X]]), Er, (F)) = Hompg, (Ro[[X]] ©r, Hiy, (Ro); Er, (k) = Hompg, (Ro[[X]], Ro)
hold) of the canonical map
Hin, (Ro[X]) = Hig, (Ro) @R, RolX] — Hy, (Ro) © Ro[[X]] = Hyg, (Ro[[X]])

which is obviously injective. This means that « is surjective. The Rg[X]-module Hompg, (Ro[X], Ro) can be
written as Ro[[X ~!]] and in Ro[[X ~!]] the element

=1+ X M4 X724,
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has Ry[X]-annihilator zero (essentially because the sequence of differences 2!—1!,3!—2!, ... becomes arbitrary
large). Choose an element i € Hompg,(Ro[[X]], Ro) which is mapped to i’ by o Then annp x)(h) = {0}

which implies anng,[;x)(h) = {0}, using a flatness argument.

1.4.3 Remarks
Let (R, m) be a noetherian local ring and y1,...,¥; a sequence in R and suppose that conjecture (*) holds.

(i) For every fixed prime ideal p of R, one has

Assg(Hompg(H{, . r(R),Er(R/p))) = {a € Spec(R)|(H{,, ., r(R/9))p # 0}

(ii) For every prime ideal p of R, let v, be a set. Then

Assgp(Homp(H{,, ., r(R), @ ErR/P)") = ] Assg(Homg(H{,, . r(R),Er(R/p))) -
pESpec(R) vp #0

As a consequence, in the situation of (1) (note that then we had more assumptions: R is complete and

equicharacteristic and y is such that Héyl yor(H) # 0), one has

yeeey

Assr(Dr, (H(y, .. y)r(R))) = Assr(Dr(Hy, .. ,)r(R))) -

Proof:
i) For every prime ideal p of R, Er(R/p) = Er, (Ry/pRy) is naturally an R,-module. This implies
(i) y p p » (Bp /PRy y an R,

yi) Ry (RP)’ Er, (RP/pRP))

Hompg (H{,, ., r(R),Er(R/p)) = Homp, (H,

.....

and, therefore and because of (*),

Assg(Hompg (H{y, . r(R),Er(R/p))) = {P N RIP € Assg, (Homg, (H, .z, (Bo),Er, (Ro/pRy)))}
= {q € Spec(R)| H7(;y17~u,yi)R(R/q)P #0} .
(ii) We have natural inclusions
@ Homg(H, . r(R).Er(R/p)“) CHomp(H{, . rB):. @ Er(R/p)")
peSpec(R) peSpec(R)

C [l Homn(ti, . n(R)Er(R/p)"
peSpec(R)

Every annihilator of a non-trivial element of [],cqpec(r) HomR(H%y1 .ynr(B),Er(R/p))" is contained in

some associated prime ideal of some HomR(szh.. (R),Er(R/p)), where v, # (). But the set

SYi) R

Assp(Homp(Hy, . r(R), Er(R/p)))

is stable under generalization because of the conjecture (*). Therefore, we get

Assp(Homp(H{,, . r(R), € Er®/p)*)) =Assg( € Homgp(H, ., r(R) Er(R/p)")
pESpec(R) pESpec(R)

= U ASSR(HomR(H%yl7...,yi)R(R)’ Er(R/p)))
peZ

C Assp(Dr(H, _,)n(R)) -

In particular, in the situation of (1), we have

Assg(Dr,(H,, . ,)r(R)) = Assp(Dr(H},, ., r(R)) .
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2 Associated primes — a constructive approach

In this section we will prove results on the set

ASSR(D(Hézl ..... a:,)R(R))) )

where T = x1,...,2; is a sequence in a noetherian local ring R. The proofs are based on the fact that, over
the formal power series ring R = k[[X71,...,X,]] (k a field), the R-module
E=kX{Y. ., XY

n

is an R-injective hull of k. The methods in this sections are constructive to some extent, in fact, we
construct certain elements in k[X o , X 7!]. For the proofs, we will have to distinguish between the
equicharacteristic and the mixed-characteristic case. One major result in this section is (theorem 2.4, see
also theorem 2.5 for the case of mixed characteristic):

If x = 1,...x; is a sequence in a noetherian local equicharacteristic ring (R, m) and z is part of a system of

parameters of R/p for some fixed prime ideal p of R, then one has

pe AssR(D(HéII,_“,zi)R(R))) :

We will also see that, in general, not all associated primed of D := D( zwlml) r(R)) are obtained in this
way (remark 2.7 (ii)). As a corollary, we are able to completely compute the set Assg(D) in the case i =1
(corollary 2.6):

Assr(D(Hzg(R))) = Spec(R) \ V()
(note that V(z) = {p € Spec(R)|x € p}). In particular, this set is infinite (in general). The sections ends

with remarks on the questions of stableness under generalization of the subsets

Zl = {p S SpeC(R)| H2T17,’I‘7)R(R/p) 7é 0}
and

Zs :={p € Spec(R)|z1,...,x; is part of a system of parameters for R/p}

of Spec(R). Note that we have
Zy C Assp(D) C Zy

by theorems 2.4, 2.5 and remark 1.1.2.
We start with a special case of the result mentioned above:

2.1 Lemma
Let k be a field, n > 1, R = k[[X1,...,X,]] and i € {1,...,n}. Weset I := (X1,...,X;)R and m :=
(X1,...,Xn)R. Then

{0} € Assr(D(H}(R)))

holds.
Proof:

1. Case: i = n:

19



Here H;(R) = Eg(R/m) und also D(H%(R)) = R and the statement follows.
2. Case: i < n: We have
Hi(R) =lim  (R/(Xi,...,X])R) ,

—
leN\{0}

the transition maps being induced by R — R, r — (X7 -...- X;) - 7. So

D(H(R)) =lim (D(R/(X},...,X)R)) ;

leN\ {0}
here
D(R/(X1,..., X])R) = Homg(R/(z},...,2}), D(R)) = Egy(x! ... x)r(R/m)(C Er(R/m)) ,

the transition maps being induced by Er(R/m) — Er(R/m), e — (X1 -...- X;)-e and we have Eg(R/m) =
kX7, ..., X '] (by definition, the last module is the k-vector space with basis (X{*-...- Xin); . <o and

with an obvious R-module structure on it). We define

a=1,X X XS X X X
XY X x Y xy
F XXy (XY XX ™) € D(HE(R))

Here we consider the projective limit as a subset of a direct product. We state anng(a) = {0}: Assume
there is an f € anng(«) \ {0}. We choose (a1, ...,a,) € Supp(f) such that (as,...,a;) is minimal (using
the ordering

(c1y...c) < (.. )<= 1 <A N Ae; < ¢ )
in

{(a1, ... a9)Baiyy, - ay, = (ai, ... ay,) € Supp(f)}
We may assume a; = max{as,...,a;}. Wereplace f by X5~ *2-.. .- X 7% f: thismeans a; = ... = a; =: a.
Choose hq,...,h; € Rand g € k[[X;11,...,X,]] \ {0} such that

f=XI A+ X (XX g

f - a =0 means: For every m we have

0=[X{hy + .o+ X+ (X XD g (XT™ e X L XX
= (XPF 4 X R (X X (X e,
XTI g (XY X e X X
Choose (b;y1,...,b,) minimal in Supp(g); then for all m >> 0 the following statements must hold:

(m—a)l—biy1 <(m—a-—1)!

(m—a)l—b, <(m—a-1)!
For m >> 0 this leads to a contradiction, the assumption is wrong and the lemma is proven.
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2.2 Lemma
Let p be a prime number, C' a complete p-ring, n > 1, R = C[[X1,...,X,]] and i € {1,...,n}. We set
I:=(Xy,...,X;)R and m := (p, X3,...,X,)R. Then

{0} € Assg(D(H}(R)))

holds.
Proof:
We have
H;(R) =lim  (R/(X{,...,X[)R) ,

leN\{0}

the transition maps being induced by R — R, r +— (X7 ... X;) - . We deduce
D(H;(R)) =lim  (D(R/(Xj,...,X{)R)) :

leN\ {0}

we recall
D(R/(X1,...,X{)R) = Er/(xt,.xyr(R/m)(C Er(R/m)) ,

the transition maps being induced by Eg(R/m) — Er(R/m), e — (X1 -...- X;) - e. Furthermore

ER(R/m) = (Op/C)[Xfl, s ,X;l]

holds (because of
Er(R/m) =H{ %y r(R)

= Hyr(R) ©r ... ®r Hy, z(R)
= (Cp/C) ®@c ((Rx,/R) ®r ... ®r (Rx,/R)) .

We define
a=(pT T AT X T X X p T X
XY X Xy
H(pmmm iy et Xl (X XY X XL € D(HY(R))

and, similar to the proof of lemma 2.1, we show that anng(«) = 0. Assume to the contrary there is an

f € anng(a) \ {0}. Choose (ay,...,a;) minimal in
{(a, ... a;)|there exists aj,,...a, such that (a},a,) € Supp(f)} .

Like before we may assume a; = ... = a; =: a. Choose hi,...,h; € Rand g € C[[Xi41,...,Xn]] \ {0} such
that
f=X0 o XA XX g

7

a - f =0 implies, for all m € N\ {0},

0= (X{ T hi+ .o+ X0+ X0 X0 g) (7 XX X X =

K2 n

= (XU o X R [p X X e (pm (e D (e DLy (mea

7
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(XX g (ot X X g p ety et ety

n

Now, let (b;j41,...,b,) be minimal in Supp(g) and ¢ € C be the coefficient of ¢ in front of ijfll o X,

In C,/C we have c-p~(m=a)t £ for all m >> 0. So, like before, we must have
(m—a)l =biy1 < (m—a—1)!
(m—a)l—b, <(m—a-1)!

for all m >> 0, which leads to a contradiction again.

2.3 Lemma
Let p be a prime number, C' a complete p-ring, n € N, R = C[[X1,...,X,]], i € {0,...,n}, I :=
(p, X1,...,X;)R and m := (p, X1,..., X,,)R. Then

{0} € Assr(D(H;™'(R)))

holds.
Proof:
1. Case: i = n: In this case we have H{"'(R) = Er(R/m) and hence D(H,"'(R)) = R.

2. Case: i < n: Similar to the situation in the proof of lemma we have

p~X1-‘..-X7;

D(HT (R)) = lim (B p,x,,...x0 8 (R/m) P By 2 xayp(Rjm) P800
Er(R/m) = (Cp/O) X1, X, ]
and we define
a=p p XX e X X p X X
pp Dty x L x )y
D (D x e e X g (D ety

Again we state anng(«) and assume, to the contrary, that there exists an f € anng(«) \ {0}, choose

(ai1,...,a;) minimal in
{(a},...,a})|There exist aj,y,...,a, such that (a,...,a;,) € Supp(f)}
may assume a; = ... = a; =: a and choose hi,...,h; € R, g € C[[X;41,-..,Xn]] such that
f=XM 4+ X (X ad) g

This means, for all m € N,

0= (X{Hhy 4o XOH ) DX X e (p DX D (e,
(XX g (pr D x e x e et St (et
Choose (bit1,- - ., b,) minimal in Supp(g) and let ¢ € C be the coefficient of ¢ in front of Xffll oo Xbe In

C,/C we have g - p~(m+1) £ ( for all m >> 0, and so we must have for all m >> 0
(m—a)l—biy1 <(m—a-—1)!

22



(m—a)l=b, <(m—a-1)!
which leads to a contradiction, proving the lemma.

i
(Z17..

situation (R does not have to be regular). This is done essentially by using various base-change arguments

Now we are ready to prove that certain prime ideals are associated to D( ) r(R)) in a more general

and lemmas 2.1 — 2.3:

2.4 Theorem

Let (R, m) be a noetherian local ring, ¢ > 1 and z1,...,x; a sequence on R. Then

Assp(D(H{, ..o, r(R))) € {p € Spec(R)|H{,, . ,,)r(R/p) # 0}

.....

holds. If R is equicharacteristic,

{p € Spec(R)|x1,...,z; is part of a system of parameters for R/p} C ASSR(D(HZ@I,...m)R(R)))

holds.
Proof:
The first inclusion was shown in remark 1.2.1. For the second inclusion let p € Spec(R) and z;41,...,2, € R
such that x1,...,2, (more precisely: their images in R/p) form a system of parameters for R/p; then

n = dim(R/p). 1,...,2, also form a system of parameters in R/pR. Choose q € Spec(R) with dim(R/q) =
dim(R/p). This implies q € Min(R) and gqNR = p. Because of dim(R/q) = dim(R/p) the elements 1, .. ., ,

form a system of parameters of R/q. It is sufficient to show q € Assz(D(H! (R))). Namely, as

(x1,-.,xi)R

D(Himl,...,zi)é(é)) = Homp

= D(Hle,,xl)R(R)) )

every monomorphism R/q — D(H’ (R)) induces a monomorphism

(-”617~--7-T71)R

R/p kan. R/q — D(H' )R(R)> = D(H%xl,i..,m)R(R)) ’

(1,05

This means we may assume that R is complete.

We have to show that the zero ideal of R/p is associated to

Homp(R/p, D(Hy, . o) r(R)) = D(H, .. 2, r/p (B/P))

(this equality was shown in the proof of the first inclusion). Replacing R by R/p we may assume that R is
a domain and p is the zero ideal in R. Let kK C R denote a coefficient field.

Ro = k‘[[ml,,xn]] - R
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is an n-dimensional regular local subring of R, over which R is module-finite. Let my denote the maximal
ideal of Ryg. The R-Modul Hompg, (R, Er, (Ro/mp)) is isomorphic to Egr(R/m). We have

D(H!

=
&
E
=2
I
jas)
S
B
-

(Hlu,,....o0r(R), Er(R/m))

= HomR(Hle’ w0 Re (F0) ®R, R, Er(R/m))

HE% wi) R (F20), Homp, (R, Er, (Ro/mo)))
R,HomRO(Héxl i) Ro (120), ERy (Ro/mo)))
R, D(H{y, .. 2,)r,(R0))) -

I
o
o
B
g

,,,,,

By lemma 2.1 there exists a monomorphism Ry — D(H,él'h 2:)Ro (F0)); 80 We get a monomorphism
Homp, (R, Ry) — Hompg, (R, D(H(s, . .)r,(Ro))) = D(H{,, .. r(R)) -

R is a domain and module-finite over Ry, and thus {0} € Suppy(Hompg, (R, Ro)); the statement now follows.

Again, there are versions for the case of mixed characteristic:

2.5 Theorem
Let (R, m) be a noetherian local ring of mixed characteristic, p = char(R/m), ¢ > 0 and x4, ...,2; € R. Then

{p € Spec(R)|p,x1,...,x; is part of a system of parameters for R/p} C AssR(D(Hl(;'iﬁ1 mi)R(R))) .

In case i > 1, we have in addition

{p € Spec(R)|p, z1,. .., ; is part of a system of parameters for R/p} C AssR(D(Héxl’_UM)R(R))) .
Theorem 2.5 is proved in a similar way like Theorem 2.4, using lemmas 2.2 and 2.3 instead of lemma 2.1.
In the case ¢ = 1 the results proven so far are sufficient to completely compute the set of associated primes:

2.6 Corollary

Let (R, m) be a noetherian local equicharacteristic ring and = € R. Then
Assg(D(H,g(R))) = Spec(R) \ B(x)
holds. In particular, this set is infinite in general.

2.7 Remarks

(i) If one has AssR(D(H(xl
and also H(:c1
(*) holds.

)R(R))) = () in the situation of the theorem, it follows that H’@l wor(B) =0

,,,,,,,,,,

2,)r(/p) = 0 for every p € Spec(R) (by a well-known theorem), i. e. in this case conjecture

(ii) The second inclusion of theorem 2.4 is not an equality in general: For a counterexample let k be a field,
R = k[[y1,y2,y3, ya]] and define x1 = y1y3, T2 = yaya, T3 = y1ya + Y2ys. T1,T2, 23 is not part of a system of
parameters for R, but we have

(1,2, 23)R = (y1,92) RN (y3,y4)R
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and so a Mayer-Vietoris sequence argument (see, e. g. [BS, 3.2.3] for a reference on the Mayer-Vietoris
sequence) shows
I _ 113
Er(k) = H(yl,yz)Rﬁ(yg,y4)R(R) - H(Ihfz,ws)R(R)

and so D(H? (R)) = R. Thus {0} € Assg(D(H{,, ,, »)r(1))-

(z1,22,23)R

(iii) In the situation of theorem 2.4, set

Zy == {p € Spec(R)| H{, ... ., r(R/p) # 0}

and

Zy = {p € Spec(R)|z1,...,x; is part of a system of parameters for R/p} .

Then Z; is stable under generalization (this follows e. g. from the following well-known fact: If I is an
ideal of a noetherian domain R such that 0 = H%(R) = H;"*(R) = ... holds for some fixed [ € N, then
0=H4(M) = H;™ (M) = ... holds for every R-module M).

But note that, in general, Zs C Spec(R) is not stable under generalization, even not if R is regular; namely,
for an example where Z, is not stable under generalization, let R = k[[z1, 22, 3, 24]] be a formal power series

algebra in four variables over a field k, set
Po = (I1$4 + ZQIg)R and p= (1‘3,I4)R .

Then z1, 25 is a system of parameters for R/p, but is not a part for R/po (because 124 + xox3 is contained
in the ideal (z1,22)), i. e. we have
Po Cp,p € Zo,po & 2o .

Assume now that R is regular; then, at least, the following special form of stableness (of Z3) under gen-
eralization holds: Let p € Spec(R) such that z1,...,x; is part of a system of parameters for R/p. Then

T1,...,T; is part of a system of parameters for R, i. e. one has the implication
Z2¢®:>{0}€Z2 .

This follows from the so-called height-formula which holds for regular local rings and which says (we apply
it to the ideal (x1,...,2,)R+p C R):

height((x1, ..., z;)R + p) < height((z1, ..., x;)R) + height(p) < i + height(p) .
But, because of our assumption p € Z5, we must have
height((x1,...,2z;)R+ p) = i + height(p)

and, therefore, height((x1,...,2;)R) = i.
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3 Associated primes — the characteristic-free approach

In this section we investigate associated prime ideals of Matlis duals D(H%(M)) of local cohomology modules
(R is local, of course); there are two subsections: In the first one, we prove characteristic-free versions of
some results on the set of associated primes of such a module; out methods here are different to the ones
used in section 2. Some results of this section can be found in [HS1]. In the second part of this section, we
concentrate on the case M = R, i = dim(R) — 1, theorems 3.2.6 and 3.2.7 (where we actually compute the

set of associated primes of D(H(}hm(R)_l(R))) contain the main results of this second subsection.

3.1 Characteristic-free versions of some results
The following lemma is crucial for this subsection:

3.1.1 Lemma
Let R be a ring, z,y € R and U an R-submodule of R, such that im:, C U, where ¢, : R — R, is the

canonical map. Let S :=im¢, C R,. There exists an R-epimorphism
R, /U — Ray/(Sz + Uy).

Proof:
Let V := S, + U, C Ry and let (by,b2,...) € RN" be an infinite sequence. For i € N we set

j=1
We calculate
41 "y [ b
_ j j
WHYWH—Q:;ZEE+WW—Q:ESHE+V>
j=1 j=1
bit1
T it tV

because

biv1i _ .
yli+1 € (ime)y, CU, CV .

Thus we have zp;11 = p; for all i € N and so we get a map ¢ : R, — Ry, /V given by

Ll—w‘pi (reR,ieN).
x'L

r

It is easy to see that ¢ is R-linear. Let u € U be arbitrary. There are r € R and 7 € N such that v = .
We have

‘ ’I“bj ‘ l‘j_lbj
@(u)zrpizzgzile—FV:uZ; = +V =0,
j= j=

because

v J=1p.
W ey, cv .

= v
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This implies U C ker(y) and hence we get an induced R-homomorphism f : R,/U — R,,/V. The set
{& + Uli € N"} is a generating set for R, /U and so we have

f is surjective <= ¢ is surjective <= {p1,p2,...} generates R,,/V.

The set { > + V|i,j € N*} generates R,,/V. For i € NT we set

iyl

by by by ... b
B, e b.g b.3 b.4 . bifl
l;i bi.+1 bi;LQ ceo o boig
Then we have for i € N*:
i1 T 1 1 1 T
(Pi, Ypix1s- Y P2i-1) :Bi(%JrV,WJrV,...,xTJiJrV) .

If we choose by, bo,... € R in such a way that det B; € R* for all i € N* (which is possible, B consists only

of ones and zeroes), then {p1, p2, ...} generates R, /V.

From now on we assume that R is noetherian, we can use Cech cohomology to compute local cohomology.

Thus, lemma 3.1.1 implies:

3.1.2 Theorem
Let R be a noetherian ring, M an R-module, m € Nt n € N, 21,...,Zm,Y1,...,Yn € R. Then there exists
an R-epimorphism

His,oayr(M) = HGT (M).

(T15 s Y150 Yn ) R

Proof:
Obviously it suffices to prove the statement for the case M = R. Using Cech cohomology to compute both

local cohomology modules the statement follows immediately from lemma by induction on n.

By dualizing the surjection from the preceding theorem we get an injection. But, then, the set of associated
prime ideals of the right-hand side is contained in the set of associated prime ideals of the left-hand side.
This is the basic idea in the proof of statement (ii) in the following theorem (the same is true for (iii), (iv)

and (v), as these statements follow from (ii), see the proof below for details):

3.1.3 Theorem

Let (R, m) be a noetherian local ring, m € N, z1,...,2m € R and M a finitely generated R-module. Then
the following statements hold:

(i) dim(M/pM) = m for every p € Assg(D(H{;, . r(M))).

(ii) {p € Suppr(M)|z1,...,xm is part of a system of parameters of R/p} C Assp(D(H{;,
(iii) Assg(D(HLR(R))) = Spec(R) \ B(x) for every = € R.

(iv) If @1,...,&m is part of a system of parameters of M, we have Assh(M) C Assp(D(H{;, . g(M)));
furthermore, if m = dim(M), equality holds: Assh(M) = ASSR(D(Hiim(M)(M))) (note that, by definition,
Assh(M) consists of the associated prime ideals of M of highest dimension).

.....
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(v) If R is complete, p € Suppg (M) and dim(R/p) = m, the equivalence
p € Assp(D(H{;, . 2,yr(M))) < 21,...,2m is a system of parameters of R/p

holds.

Proof:

We set I := (21,...,Zm)R.

(i) Let p € Assgp(D(HT(M))). We conclude

0 # Homg(R/p, D(Hf"(M))) = D(H]" (M) ®r (R/p)) = D(HT' (M/pM)).

Thus we have HJ*(M/pM) # 0 and statement (i) follows (note that it follows also from remark 1.2.1).

(ii) Let p € Suppgr(M) such that zq,...,x,, is part of a system of parameters of R/p. By completing
Z1,-..,Tm t0 a system of parameters of M/pM and using theorem 3.1.2, we may assume that x1,..., %, is
a system of parameters of M/pM. So we have dim M/pM=dim(R/p) = m. Therefore we get

Hompg(R/p, D(H"(M))) = D(HT" (M/pM))

On the other hand we have Hompg(R/q, D(H}*(M))) = 0 for every prime ideal q of R containing p properly,
by (i); statement (ii) follows.

(iii) Using (ii), it remains to show that @ ¢ p holds for every p € Assgr(D(HLz(R))). As we have seen above,
our hypothesis implies H! z(R/p) # 0. So we must have = & p.

(iv) The first statement follows from (ii) (note that, for every p € Assh(M), x1,..., 2y, is part of a system
of parameters of R/p, too) and then the second statement from (i).

(v) Let p € Suppr(M) such that p € Assp(D(HT(M))). We have to show that x1,...,z,, is a system of
parameters of M/pM: HP'(M/pM) # 0 implies HJ*(R/p) # 0. As R and hence R/p are complete we may
conclude from Hartshorne-Lichtenbaum vanishing (see, e. g. , [BS, 8.2.1] or theorem 6.1.4 for a reference on

Hartshorne-Lichtenbaum vanishing) that dim(R/(I +p)) =0, i. e. x1,...,Z,, is a system of parameters of

R/p.

3.2 On the set AssR(D(H?im(R)_l(R)))
We prove a series of lemmas which we will need for the main results 3.2.6 and 3.2.7.

3.2.1 Lemma
Let (S, m) be a noetherian local complete Gorenstein ring of dimension n+1 (> 1) and P C S a prime ideal
of height n. Then

D(Hy(9)) = Sy /S

holds canonically.
Proof:

Local duality over the Gorenstein ring S shows that there are natural isomorphisms

D(H3(S)) = D(lim, Ext(S/9',5)) = lim Hy, (S/P)

leN leEN
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Take y € m \ B. Now, /y(S/P!) = m(S/P!) implies
Hiw (S/B') = Hy () (S/B') = (Sy/B'Sy)/(S/B') = (Sp/B'Sp)/(S/B)
and the statement follows by observing that the maps
(S /P Sp)/(S/BHY) — (S /B Sp)/ (/)
which we get from this, are the natural ones.

3.2.2 Lemma

Let (R, m) be a noetherian local complete domain and I C R a prime ideal such that dim(R/I) = 1. Then
there exist a noetherian local complete regular ring S, a local homomorphism S 2. R and a prime ideal
) C S such that R is finite as an S-module and such that

height (ker(p)) = 1,dim(S/Q) = 1, VAR = I,ker(p) C Q

hold.
Proof:
Either R contains a field k or, if not, a coefficient ring (V,tV'); choose y1,...,yn,y € R such that

I=+/(y1,...,yn)R

and y1,...,Yn—1,y is a system of parameters of R (dim(R) = n); in the case of mixed characteristic we may
take yp :=tift € I and y:=tif t ¢ I. Now we define a subring of R:

Ro == k[[y,y1,- - Ynl]

(if R contains a field) resp.
Ry = V[[ya Y2, 7yn]]

(if R contains no field and ¢ € I) resp.
RO = V[[y17 ey yn]]

(if R contains no field and ¢ ¢ I). Furthermore we define a power series ring
S:=EK[Y,Y1,...,Y,]] resp. V[[Y,Ya,...,Y,]] resp. V[[Y1,...,Y,]]
(all capital letters denote variables) and it is clear how to define a surjection S % Ry(C R). We set
Q:=(Y1,...,Y,)S resp. (¢,Ys,...,Y,)S resp. (Y1,...,Y,)S,
where in all three cases we have ker(p) C Q because of y & I. All other statements are obvious now.

3.2.3 Lemma
Let R be a noetherian ring.

(i) Let B be a prime ideal of R which is not maximal. Then the equivalence
Ry = Es; <= P is minimal in Spec(R)
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holds.
(ii) Assume that R is local (and noetherian) and that all prime ideals associated to R are minimal in Spec(R).
Then Assz(R/R) C Ass(R) holds. In particular if R is a non-complete (local) domain (i. e. if R C R),

Assgp(R/R) = {0}

holds.

Proof:

(i) The implication < is clear as every zero-dimensional local noetherian ring is complete. We assume there
exists a prime ideal P of R which is neither minimal nor maximal in Spec(R) and such that Rp = Rp. PR pis
not minimal in Spec(R). Choose @, Q' € Spec(R) such that Q' C P C @ and such that dim(Rg/PRg) = 1.
We set R := Rg/Q'Rg and P := PRy/Q'Rg € Spec(R) and we get

Rp = Rp/Q'Rp = }/%;/Q’é; =Rp/Q'Rp = Rp.

So we may assume that R is a local domain and dim(R/P) = 1.
Take y € m\ P. Assume that for some n € N

P c prth) L yR

holds (P(") := P"Rp N R is a P-primary ideal of R such that PRy = P"Rp, P is the so-called n-th
symbolic power of P). It would follow that

P = p) o (pHl) Ly Ry = p+D) L (P nyR) = P+ 4 p(?)

(the last equality follows, because (™) is P-primary) and then P™) = P(*+1) by the lemma of Nakayama
(see, e. g., [Ma, Theorem 2.2] for the lemma of Nakayama). Again by the lemma of Nakayama, this would
imply P"Rp = 0 and so PRp would be minimal in Spec(Rp). We conclude that for every n € N

P g pth) Ly R

holds. For every n € N we choose z,, € P \ (P("+1) 4 yR) and define (for every n € N*)
n—1 2

=0

Because of
T

§n+1_§n:y(nT)2€PnRP

(for every n), we have
(fn + PnRP)neN+ € Rp = Rp.

Therefore, there exists £ € Rp such that

(5 + IDnI%P)nENJr = (gn + PnRP)n€N+7

§—& € P'Rp
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holds for every n € N7,
Write § = ¢, where a € R,b € R\ P. The ideal P+ bR of R is either R or m-primary, so there exist p € NT
and ¢ € R such that y? — bc € P; it follows that

yP"* — be, € P,

where
Cn =0y — (yP —be)") € R

(note that yP™ — (y? — bc)™ is divisible by b in R) and we conclude that

ac, ayP™ —abe, a(yP? — be)™
I _ =" g,
ypn bypn bypn

for every n € NT. We get

acy, ¢ acy,
yPn - yPn

fn *(gfgn)GPnRP

for every n € N, From this we get (for n > p) after multiplication by y”2 that

n—1
3wy D e, ynnr) ¢ po)
=0

and in particular x,_; € P + yR which is a contradiction.

(ii) We only have to prove the first statement, the second one follows from it immediately; Let P be an
arbitrary element of Spec(R) \ Ass(R); We conclude Homp(R/P, R) = 0 and hence also Homg(R/P, R) = 0
(because P contains an element which operates injectively on R and R is flat over R). Thus the short exact
sequence

0-RSR—-R/R—0
induces an exact sequence
0 — Hompg(R/P, R/R) — ExthL(R/P,R) % Exth(R/P,R).
By our hypothesis there exists @ € P such that « ¢ @ for all @ € Ass(R). We get short exact sequences
0—-R5R— R/zR—0

and
0—R%R— R/zR — 0.
Because of x € P a commutative diagram with exact rows is induced:
0 — Homp(R/P,R/xR) — Exth(R/P,R) — 0

v le
0 — Homg(R/P,R/zR) — Exth(R/P,R) — 0.

1 is injective as R/xR C R//x\R = R/xR. Therefore, ¢ is injective which implies that Hompg(R/P, R/R) = 0,
i. e. P¢ Assg(R/R).

The following result is a special case of both 3.2.6 and 3.2.7.
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3.2.4 Theorem
Let (R, m) be a d-dimensional local noetherian complete domain, where d > 2; let P be a prime ideal of R
such that dim(R/P) = 1. Then

{0} € AssR(D(Hcf;l(R)))
holds.
Proof:
We apply lemma 3.2.2, set Rp := im(p) and consider the ideal £ from lemma 3.2.2 as an ideal of Ry. Because
of lemma 3.2.2, Ry is a complete intersection, in particular it is Gorenstein. By my we denote the maximal
ideal of Ry. R is finite over Ry and so we have Dg,(R) = Hompg, (R, Er,(Ro/mo))) = Er(R/m) = Dgr(R),
which implies D, (M) = Dr(M) for every R-module M. On the other hand the functor Hf{l(,) is right

exact by Hartshorne-Lichtenbaum vanishing; in particular we have
Dr(Hp ' (R)) = Dr,(Hy ' (Ro) ®r, R) = Homp, (R, Dr, (Hg ' (Ro)))
and so every Ro-monomorphism Ry — Dp,(H& '(Ro)) induces an R-monomorphism
Hompg, (R, Ro) — Dr(Hg '(R))

It is easy to see that {0} € Assg,(Hompg,(R, Ry)) holds (e. g. by localizing) and thus it suffices to show
{0} € Assg,(Dg, (HdQ_l(RO))), i. e. we may assume Ry is Gorenstein. Now, by lemma 3.2.1, we have a

commutative diagram with exact rows:

0 - R 5 Rp — DHLYR) — 0
1< I=
0O - Rp > Rp —  Rp/R, — O

This diagram induces an epimorphism
D(H% Y (R)) — Rp/Rp.

By lemma 3.2.3 (i) we have Rp/Rp # 0 and it follows from lemma 3.2.3 (ii) that (Rp/Rp) ®r (Q(R)) # 0.
Thus we have D(HS ' (R)) ®r Q(R) # 0 by the above epimorphism, which is equivalent to the statement of

the theorem.

3.2.5 Lemma
Let (R,m) be a noetherian local complete domain, d := dim(R) > 1 and J C R an ideal of R such that
dim(R/J) = 1. Then

Assh(R) N Assp(D(HY(R))) = {Q € Assh(R)| dim(R/(J + Q)) > 1}
holds. In particular, if H%(R) = 0,
Assh(D(HY ' (R))) = Assh(R)

holds.
Proof:
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The second statement follows from the first one by Hartshorne-Lichtenbaum vanishing. First, we prove the
statement in the special case where dim(R/(J+@Q)) > 1 for all Q € Assh(R); then we will reduce the general
to this special situation. Now, in the special case, it suffices to show the inclusion “2”: By Hartshorne-
Lichtenbaum vanishing we have H%(R) = 0, i. e. HY ! is right exact. Let Q € Assh(R) be arbitrary. The
canonical epimorphism R — R/Q =: R induces a monomorphism

Dg(H 7 (R)) = Dr(Hy(R)) — D(H]'(R)).

If {0} € ASSE(DE(Hi%I (R))) then Q € Assg(Dr(H% '(R))), and so we may assume that R is a domain. If
we can write J = J; NJy with non-m-primary ideals Jy, Js of R such that J; + J3 is m-primary then, because
of H} (R) = HY, (R) = 0 (Hartshorne-Lichtenbaum vanishing), a Mayer-Vietoris sequence argument shows
the existence of an epimorphism

HY N (R) — HY, 5, (R) = HL(R).

But then theorem 3.1.3 (iv) implies that
{0} = Assh(R) = Assp(D(H%(R))) C Assgr(D(HY(R))).

If there is no such decomposition J = J; N J2 of J we may assume that J is a prime ideal; but then
the statement follows from theorem 3.2.4. Now we turn to the general case, i. e. we assume there is a
Q € Assh(R) such that dim(R/(J + @Q)) = 0. We define U(R) to be the intersection of all Q'-primary
components of a primary decomposition of the zero ideal in R for all Q' € Assh(R). Apparently we have
Assgp(R/U(R)) = Assh(R) and dim(U(R)) < d. Because of the latter fact the short exact sequence 0 —
U(R) SR R/U(R) — 0 induces an exact sequence

0 — D(HY™(R/U(R))) — D(H) ' (R)) — D(H](U(R))).

Trivially dimg(Suppz(H% *(U(R)))) < d — 1 holds. By considering R/U(R) rather then R we may assume
that Assp(R) = Assh(R). We write 0 = I’ N I" with ideals I’, I” of R such that Asspr(R) = Assp(R/I’') U
Assp(R/I") and dim(R/(J + Q') > 1 for all Q' € Assp(R/I') and dim(R/(J + Q")) = 0 for all Q" €
Assr(R/I")). It follows that dim(R/(J + I"")) = 0. By using a Mayer-Vietoris argument and the facts that
H(R/I') = 0 (Hartshorne-Lichtenbaum vanishing) and HY (R/I") = Hi, (R/I") for all i € N we get a short
exact sequence

D (R/T + 1)) = DY (R/T') & D(i (R/1") -
— DS (R) — DL R/ + 1),

It is clear that we have
dim g (Suppr(D(Hg '(R/(I'+1"))))) <d —1

and
dim g (Suppr(D(Hy *(R/(I' +17))))) < d — 1.

R is complete and so we can use local duality to conclude that
dimp(Suppr(D(Hg ' (R/1")))) < d - 1.
Thus we get, by what is already shown,
Assh(R) N Assp(D(HY ' (R))) = {Q € Assgr(DHY H(R/I")))|dim(R/Q) = d} = Assh(R/I").
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The following theorems 3.2.6 (where R is not necessarily complete) and 3.2.7 (where R will be complete)

contain the main results.

3.2.6 Theorem
Let (R,m) be a d-dimensional noetherian local ring and J C R an ideal such that dim(R/J) = 1 and
H%(R) = 0. Then
Assh(R) = Assh(D(HY ' (R)))
holds.

Proof:
One has HiR(R) =H%(R) @z R =0 and

Dy(H}! (R) = Dy(H5H(R) © R)
— Hompg(H% ' (R), D4(R))
= Dgr(HY Y (R))

Therefore, every R-monomorphism ¢ : R/P — D R(Hi}}(ﬁi)), where 9 is a prime ideal of R, induces an

R-monomorphism R/ — Dr(H%'(R)). On the other hand we have a R-monomorphism R/p — R/,
where p := P N R. Composition of these monomorphisms gives us a monomorphism

R/p — Dr(HS(R)).

Because of Assh(R) = {8 N R|P € Assh(R)} we may assume that R is complete. But then the statement

follows from lemma 3.2.5.

3.2.7 Theorem
Let R be a d-dimensional local complete ring and J C R an ideal such that dim(R/J) = 1 and H%(R) = 0.
Then

Assg(DH%Y(R)) = {P € Spec(R)| dim(R/P) = d — 1,dim(R/(P + J)) = 0} U Assh(R)

holds.
Proof:
Let P € Spec(R). If dim(R/P) < d — 2 we have

Hompg(R/P, D(Hj ' (R))) = D(H ' (R/P)) =0
and hence P ¢ Assg(D(H% '(R))). If dim(R/P) = 1 then (set R := R/P):
Hompg(R/P, D(H5 ' (R))) = D(H] ' (R/P)) = D(HIZ'(R)).
R is complete and so, by Hartshorne-Lichtenbaum vanishing, the equivalence
H''(R) #0 <= dim(R/JR) =0
holds. On the other hand we have R/JR = R/(P + J) and, therefore
{P € Assp(D(H%(R)))|dim(R/P) =d — 1} =
= {P e Spec(R)|dim(R/P) = d — 1,dim(R/(P + J)) = 0} .

Now the statement follows from lemma 3.2.5.
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4 The regular case and how to reduce to it

By ”regular case” we mean the following situation: Let k be a field, R = k[[X1,...,X,]] a power series
algebra over k in n variables and I the ideal (X1q,...,Xp)R of R (1 < h < n). We are interested in the
associated prime ideals of

D :=D(H}R)) .

In the first subsection we will demonstrate how one can reduce conjecture (*) to the regular case, in subsection
4.2 we present results on Assg(D) for general h; subsection 4.3 concentrates on the case h = n — 2, which is

in some sense the ”first” interesting case.
4.1 Reductions to the regular case

Suppose that (R, m) is a noetherian local ring. After completing R, we can write R as a quotient of a regular
local ring S; on the other hand we can find a regular local subring S of R such that R is module-finite over
S. We will use both methods to reduce to the regular case, i. e. to make facts about Assg(Dg) into facts
about Assp(Dpr) (Ds and Dpg stand for the Matlis duals of local cohomology modules of S resp. R), see
remark 4.1.1 and theorem 4.1.2 for details.

4.1.1 Remark

Suppose that (R, m) is a noetherian local equicharacteristic domain, ¢ > 1 and z1,...,x; is a sequence in R
such that Héml,...,ri)R(R) # 0. Suppose furthermore, that one wants to show {0} € ASSR(D(H@“’”__’zi)R(R)))

(that is conjecture (*) in the equicharacteristic case). W. 1. 0. g. one can replace R by R/po, where R is

the m-adic completion of R and py € Spec(R) is lying over the zero ideal of R (because then

DR/pO(Hle """" zi)(R/po)(R/pO)) - HomR/pO(Hz(-zl 7777 Ii)(R)(R> ®p (R/po)aHomR(R/pOaER(k))>)

oni(B).Eg(k)))

wi)R(R)aER(k)))

= Hom}%(HZ(II1 _

,:L‘7)

= Homp R/po, Hom j(H'

(21,

/Po, HomR(Hi

(1,

(
= Hom R(R
= Hom R(R ____
contains en element d with R-annihilator po, i. e. with R-annihilator po N R = 0; but d is naturally an
element of DR(H’éxh...,xi)R(R)))’ and so we may assume that (R, m) is a noetherian local equicharacteristic
complete domain. Let k£ be a coefficient field of R. Now if we use a surjective k-algebra homomorphism

E[[X1,...,Xn]] = R (E[[X1,...,X,]] is a power series algebra over k in n variables Xi,...,X,,) mapping

X1,...,Xp tox,...x,, respectively, we can reduce to the following problem (note that, below, p corresponds
to the zero ideal of R):
If R = K[[X1,...,X,]] is a power series ring over a field k in n variables Xi,...,X,, 1 < i < n, q €

ASSR(D(H%Xl,H.,Xi)R(R»)’ p € Spec(R), p C g, then p € ASSR(D(H%XI,...,Xi)R(R))) holds (that is: The set
ASSR(D(Héxl ..xyr(R))) is stable under generalization).
Thus we have reduced conjecture (*) (in the equicharacteristic case) to the preceding statement, a similar

reduction is possible in the case of mixed characteristic.
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4.1.2 Theorem
Let (R,m) be a noetherian local complete ring with coefficient field k € R, I € Nt and z1,...,2; € R
a part of a system of parameters of R. Set I := (z1,...,7;)R. Let zj41,...,24 € R be such that
x1,...,%q is a system of parameters of R. Denote by Ry the (regular) subring k[[z1,. .., 24]] of R. Then if
Asspg, (D(Hl(gcl7.__,3”)1,{,10 (Ro))) is stable under generalization, Assg(D(H4(R))) is also stable under generaliza-
tion.
Proof:
Set X := Assp(D(HT'(R))) and let p; € Spec(R),p € X,p1 C p. We have to show p; € X. The hypothesis
on p implies

0# Hy(R/p) = Hiy,, 0.z, (Ro/P N Ro) ®r, R.

But ASSRO(D(Hl(zl ,,,,,
clude p N Ry € Assg, (D(Hl(gc1 ..z1)Ro (f20))) and then, by using the stableness hypothesis again, py N Ry €
Asspg, (D(Hl(xl,...,zz)Ro (Rop))). Now the existence of an Rg-linear injection Ry/py N Ry — D(Hl(whmm)RO (Ro))

implies the existence of an R-linear injection

)R, (F20))) 1s stable under generalization and so by using Matlis duality we first con-

Hompg, (R, Ro/p1 N Ro) — Hompg, (R, D(H{,, ., (Ro)))
= HOHlRO (Hl(wl,“.,:};[)Ro (R0)7 (HomRo (R7 ERr, (k))))
= D(H}(R)),

where the last equality follows from the fact Homp,(R,Eg,(k)) = Er(k). Thus it is sufficient to show
p1 € ASSR(HOI’DRO (R, Ro/p1 N Ro)) = HomRo/mﬁRu (R/(Pl N Ro)R, Ro/p1 N Ro) .

But R is finite as Ro-module and so Hompg, /p,nr, (R/p1, Ro/P1 N Ro) # 0; on the other hand p; is minimal
in the support of R/(p1 N Ro)R and so, combining these facts, the statement of theorem 4.1.2 follows.

4.2 Results in the general case, i. e. h is arbitrary
We collect some properties of Assp(D) in the regular case; note that R does not have to contain a field:

4.2.1 Theorem

Let (R, m) be a noetherian local complete regular ring. Let Xi,..., X, be a regular system of parameters
of R, n =dim(R). Set I := (X1,...,Xp)R for some h € {1,...,n}. Set D := D(H?(R)).

(i) For h = n one has

Assg(D) = {{0}} .

(ii) For h =mn — 1 one has
Assgp(D) = {{0}} U{pR|p € R prime element,p ¢ I} .

(iii) For general h the following statements hold:

() For every p € Spec(R) the implication

p € Assgp(D) = height(p) <n —h
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holds.
(B) For every p € Spec(R) such that height(p) = n — h one has the equivalence

p € Assg(D) <= I+ pis m-primary .

(7) Every f € I\ m[ is contained in no p € Assg(D); in particular, if f = p is a prime element of R (such
that p € I\ mI), one has
pR & Assp(D) .

(6) If p € R is a prime element such that p & I then
pR € Assg(D)

holds.

Proof:

(i) follows from D(HZ(R)) = R, (ii) from theorem 3.2.7. (iii) («) and () follow from theorem 3.1.3 (i) resp.
(v). (iii) (7): In the given situation one has

Hompg(R/fR, D) = D(H}(R)/fH}(R)) = D(H}(z/sr) (R/[R))

and H'I”(R/fR)(R/fR) = 0, because f is a minimal generator of I, i. e. I(R/fR) can be generated by h — 1
elements; thus multiplication by f is injective on D, the statement follows. (iii) (§) follows from theorem
3.1.3 (ii).

4.2.2 Remark

In the situation of theorem 4.2.1, the largest h, for which we cannot completely determine Assg(D), is
h = n — 2; the theorem leaves open the question which prime ideals p = pR, p € R a prime element, p € I,
are associated to R. In the next subsection we will concentrate on the case h = n — 2. We will give a
partial answer to this open question (see corollary 4.3.1) and we will see (remarks 4.3.2 (i) and (ii)) that
both pR € Assg(D) and pR ¢ Assg(D) can occur (both in the special case p € I, h =n — 2).

4.2.3 Theorem

Let (Rp, mg) be a noetherian local complete equicharacteristic ring, let dim(Ry) = n—1, k C Ry a coefficient
field of Ry, 1 < h < n. Let x1,...,2, be elements of Ry such that \/m = mgy. Set Iy :=
(x1,...,zp)Ro. Let R := K[[Xy,...,X,]] be a power series algebra over k in the variables Xq,...,X,,
I:=(Xy,...,Xn)R. Then the k-algebra homomorphism R — Ry determined by X; — z; (i = 1,...n)

induces a module-finite ring map ¢ : R/fR — Ry for some prime element f € R. We set
D:= DH}R)) .

Then
(i) D has an associated prime which contains f if and only if H?O (Rp) # 0.
Furthermore if Ry is regular and height(1y) < h, the following statements hold:

(ii) D has no associated prime ideal which contains f and has height n — h.
(iii) If HY (Ro) # 0, (f is contained in an associated prime of D and) every maximal element q of Assg(D)
containing f has dim(R/q) > h; we will see below (remark 4.3.2 (ii)) that this situation really occurs and,
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therefore, it is in general not true that all maximal elements of Assg(D(H?(R))) have dimension h; note
that his was conjecture (+) in [HS1, section 0] (see also remark 1.2.4 for more details on this).
Proof:

(i) follows from
Jpeassg(p)f €p <= Homg(R/fR,D)# 0

< D(H}(R)/fH}(R)) #0
< D(H}(R/[R)) #0
< H}(R/fR)#0

> H} (Ro) #0 .

Note that, for the last equivalence, we use the fact that via ¢ Ry is a finite and torsion-free R/ fR-module.
From now on we assume, in addition, that Ry is regular and that height(ly) < h.

(ii) We assume, to the contrary, that there is a prime ideal p € Assg(D) such that height(p) = n—h and such
that f € p: Ry is module-finite over R/f R, and so there exists q € Spec(Ry) such that qN (R/fR) = p/fR.
But now ¢ N R = p implies

height(q) = (n — 1) — dim(Ry/q) = (n — 1) — dim(R/p) = height(p) —1=n—h —1
and therefore, from height(Iy) < h, we conclude
height(Ip +q) <n—1 ,
which means that (Ip + q)/q is not mg/g-primary in Ry/q. Hence, by Hartshorne-Lichtenbaum vanishing,
Hj, (Ro/a) =0 .
But Ry/q is a torsion-free finite R/p-module, and so the last vanishing result implies
Hf (R/p) =0 ,

which contradicts the assumption p € Assgr(D).
(iii) The first statement implies that there is an associated prime of D which contains f and (ii) shows that

every such prime ideal p has height smaller than h.

4.3 The case h = dim(R) — 2, i. e. the set ASSR(D(H?);IQW X,’H?)R(k[[Xl, s XRD))

We can give a partial answer to the question which height one prime ideals contained in I are associated to
D:

4.3.1 Corollary
If we are in the special case where h = n — 2, Ry is regular and height(Ip) < h in the situation of theorem

4.2.3, we clearly have (because of theorem 4.2.3 (ii))

fR € Assp(D) <= HJ, *(Ro) #0 .
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In this case, fR is a maximal element of Assg(D). By [HL, Theorem 2.9], the latter holds if and only if
dim(Ry/Iy) > 2 and Spec(Ro/IoRo) \ {mo(Ro/IoRo)} is connected, where Ry is defined as the completion
of the strict henselization of Ry; this means that Ry is obtained from Ry by replacing the coefficient field &k
by its separable closure in any fixed algebraic closure of k.

4.3.2 Remarks

(i) In the situation of the statement (i) of theorem 4.2.3, it can easily happen that both f € I and H’}O (Ro) =0
hold; then we have, in particular, fR ¢ Assg(D). Hence, in general, not all height one prime ideals contained
in I are associated to D. In fact, if height(ly) < h, then f is necessarily contained in I. Hence, if ara(lp) < h,
then both f € I and H}, (Ro) = 0 hold and therefore one has fR & Assg(D).

(ii) In the situation of corollary 4.3.1, it can happen that fR € Assg(D). For example, we can take

n=>5,h =3,k = Q (the rationals), Ry = Ql[[y1,¥y2, Y3, v4]] ,

a power series algebra over Q in the variables 1, y2,y3, ys. We set
T1 = Y1Y3, T2 = YoU4, T3 = Y1Ya + Y2Y3, T4 = Y1 + Y3, T5 = Y2 + Y4 .
Then height (/o) = 2 and H} (Ro) # 0. Furthermore
fi=—Xo X7 4 X3 Xy X5 — X1 X2 +4X, X, — X2 €R

generates the kernel of the Q-algebra homomorphism R — Ry, which is determined by X; — z; (i = 1,...,5),
where R is defined as the power series ring Q[[ X1, X2, X3, X4, X5]] over Q in the variables X1, X2, X3, X4, X5.
Now, by corollary 4.3.1, fR is a maximal element of Assr(D). In particular, this example clearly provides
a counterexample to conjecture (+) from [HS1, section 0] (see also remark 1.2.4 for details on this).

Proof:

(1) We assume that height(Iy) < h and prove f € I: Let po be a prime ideal minimal over Iy and such that
height(po) < h — 1; the inclusion po N R O I + fR induces a surjection R/(I 4+ fR) — R/po N R; on the other
hand, Ry/po is finite over R/po N R. Therefore we have

dim(Ro/po) = dim(R/po N R) < dim(R/(I + fR)) .

Now, if f was not contained in I, one would conclude dim(Ry/pg) < n — h — 1 and, hence, height(pg) > h.
(ii) It is easy to see that

VTo = (y1,y2)Ro N (y3,y4)Ro

and so height(ly) = 2 and a Mayer-Vietoris sequence argument, applied to the ideals (y1,y2)Ro and
(ys,y4)Ro, shows that H:}O(Ro) # 0. f generates the kernel of the Q-algebra homomorphism R — Ry;
this can be seen e. g. by observing that f, as an element of Q[X7, Xo, X3, X4, X5], generates the kernel of
the associated map over polynomial instead of formal power series rings, which in turn is true, because first
of all an easy calculation shows that f is in this kernel and, secondly, as a polynomial, f is irreducible, which
can either be seen by a direct calculation or by using a computer algebra system like, for example, Macaulay

2. The rest follows from corollary 4.3.1.

Assume that p € [ is a prime element. The next example and, more generally, theorem 4.3.4 show that

under certain conditions, p is contained in infinitely many associated height two prime ideals of D. This
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is useful for two reasons: It will lead to a generalization of an example of Hartshorne of a non-artinian
(but zero-dimensional) local cohomology module (see theorem 6.2.3); and secondly, it will show that either
conjecture (*) holds (for h = n —2) or, if not, D satisfies a remarkable property (see remark 4.3.6 for details

on this property).

4.3.3 Example
Still in the above situation consider p := X1 X,, + XoX,,—1 € I N (X,_1,X,)R. For every A\ € k set
px = (Xy—1 +AX1, X, — AX2)R. Then py € Assg(D(H} *(R))) holds (this follows from theorem 3.1.3 (v))
and

p=X1(Xn — AX2) + Xo(Xpo1 + AX7)

is contained in every py.
The same idea works more general:

4.3.4 Theorem
Let R = k[[X1,...,Xn]] be a power series ring in the variables X1,...,X,, (n > 4) over a field k and let I
be the ideal (Xi,...,X,_2)R (i. e. h = n — 2 in the above notation). Furthermore, let p € R be a prime
element such that p € I N (X,,—1, X,,)R.
The set

{p € Spec(R)|p € Assg(D(H} *(R))),p € p, height(p) = 2}

is infinite.
Proof:
It is easy to see that there exist f,g € I, f & (Xn—1,X,,)R and | > 1 such that

p=X,f+Xn 19
holds. Let m € NT be arbitrary. We have
p= (X} +X"9)f + (Xn-1— X" f)g

and so
peE Im = (X'fz +X{ngvxn—1 - X{nf)R .

The elements
Xla s 7Xn727Xr£L + X{ngvanl - X{nf

form a system of parameters of R and so there exists a p,, € Assg(D(H} *(R))) containing I,,. For

m,m’ € N* . m #m’

V Im + Im’ = (XlaXnaXn—l)Rﬁ \/(Xn—laXn7f7g)R

holds; in particular, all primes containing I,,, + I,,,» have height at least three. The statement follows.

4.3.5 Remark
In the situation of theorem 4.3.4, conjecture (*) would clearly imply pR € Assg(D). Now, if pR was not

associated to D, there would be a remarkable consequence, which is somewhat counterintuitive (note that,
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in the situation below, the way we choose p; has nothing to do with the way how we choose djy1,dj1a,...)

and which is explained in the next remark.

4.3.6 Remark

Let R = Kk[[X1,...,X,]] be a power series algebra over a field &k in the variables Xy,...,X,; set I =
(X1,..., Xn_2)R,D := DH} ?(R)) and Y := X -...- X,,_o; furthermore, assume that p € I is a prime
element of R such that there are infinitely many height two prime ideals associated to D and containing p
(by theorem 4.3.4, this is true for example, if p € (X,,—1, X;,) R holds) and such that pR & Assr(D).

Then for any sequence (p;);en of pairwise different elements of Assg(Hompg(R/pR, D)) and for any sequence
(d;)ien in D such that Anng(d;) = p; for every ¢ € N, there exists a number N such that

AnnR(dH_lYHl + dl+2Yl+2 +.. ) Cp

holds for every | > N (see the proof below for remarks on our notation).
Proof:
It is well-known that H? ?(R) is the cohomology in the n — 2-th degree of the Cech-complex

n—2 .
0—R— @illeXil - @1§’i1<i2§n*2RXi1Xi2 e T RX1~~X7L72 =0 ;
Therefore we can write H} " *(R) as

FIXna Xall[XT - X0

by definition, this expression shall stand for
Di,onin 2 <OR[Xn1, Xl - XTH - X5
with the obvious R-module structure on it. Using this, a straight-forward calculation shows

D= kX, XX KXo

n—1»“*n

where we use similar notation like above, i. e. we write the elements of D as formal power series in

X1,...,X,_o and coefficients in

G X0 = @i,y icok - X0 X

n—1» n—1 "

Using this description of D it is clear that d; 1 Y'™" + d;, oY+ + ... is an element of D for every [ € N. In

the same way it is clear that the element
di=do+Y -di+Y? do+...€D

is well-defined. By construction p annihilates d and so, because of pR ¢ Assgr(D), there exists r € Anng(d)\
pR. We conclude
O=rd=rdy+7Yd  +7Y%ds+ ...

The height of every prime ideal associated to D is at most two and thus for every [ € N either Anng(rd;) = p;
or rd; = 0 holds. The latter condition is equivalent to r € p;, which holds if and only if p; contains the ideal
(r,p)R. Hence there are only finitely many [ € N such that rd; = 0, the set

M := {l € N|rd, = 0}
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is finite. For every | € N\ M we have
AnnR(dHlYH'1 + ngYH'Q +...)C AnnR(le+1Yl+2 + rngYH'Q +...)=Amng(rdo+...+ rdlYl) Cypr o
note that the last inclusion follows from lemma 4.3.7 below. In particular, for every [ > max M we have

AHHR(dl+1Yl+1 + dl+2Yl+2 + .. ) Cyp ,

we can take N := max M.

4.3.7 Lemma
In the situation of theorem 4.3.4, assume that di,...,d, are elements of D such that for every i =1,...,n

the ideal Anng(d;) =: p; is a height-two prime ideal of D and such that the p,; are pairwise different. Then
AHHR(dl—F...—‘rdn) =p1N...N0p,

holds.
Proof:
By induction on n, the case n = 1 being trivial. We assume that n > 1 and that the lemma is true for
smaller n. The inclusion D is trivial. Now, if there was an element r € Anng(dy + ... + d,) \ p; for some
i€ {1,...,n}, we would have

—rdy =rdy + ...+ rd,

and
paN...Np, =Anng(ds+...+d,) C Anng(rds + ... +7d,) =p1

which would be a contradiction.
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5 On the meaning of a small arithmetic rank of a given ideal

We investigate the condition that the arithmetic rank of a given ideal is small in the sense that it is one or
two. We start with an example of an ideal whose cohomological dimension is one but whose arithmetic rank
is two (example 5.1); this makes the question when ara(I) < 1 holds more difficult; we present criteria for
this condition and also for ara(l) < 2 (theorem 5.2.5 and corollary 5.2.6). While this works equally well in
the local and in the graded case, we distinguish some subtle differences between these two cases in the third

subsection 5.3.

5.1 An Example

We start with an example of an ideal I of a noetherian ring R where both 0 = H?(R) = H3(R) = ... and
ara(l) > 2 hold: Let k be any field and R = k[[z,y, 2z, w]] a power series ring over k in four variables. Set

f=rw—yz,

g =y -2z, =2 —wy

and
I= (faglaQQ)R .

The ideal I C R is the complete version of the vanishing ideal of a rational quartic curve in projective three-
space over k; it is well-known that I C R is a height-two prime ideal of R. We claim that both H}(R/fR) =0
for every s > 2 and ara(I(R/fR)) > 2 hold (the last statement may be known, we include a proof for lack
of a reference):

Let yo,...,ys be new variables and set S := k[[yo, y1,¥2, y3]]. Denote by R; the three-dimensional subring
Ry = k[[yoy1, Yoy2, ¥1Ys3, y2ys)] of S. The ring homomorphism

R — Ri,z ~ Yoy1,Y = Yoy2, 2 = Y1¥3, W > Y23

clearly induces an isomorphism
R/fR= R (CS)

Now consider the k-linear map

E[yo, 1, Y2, y3] = Ry

that sends a term yg°y7' y52ys> to yo°yr ' ys2ys® € Ry if ap + a3 = a1 + as holds, and to zero otherwise.

Note that ¢ is well-defined by construction and naturally induces a map

S = kllyo, y1, y2, ys]] 2 Ra

Now it is easy to see that ¢ is Rj-linear and makes R; into a direct summand in S (as an R;-submodule).
Thus H?(R/fR) is isomorphic to a direct summand of H?4(S). We have

IS = (g1,92)S = ((yoys — y3ys) - v&. (yoys — yiys) - (—y3))S
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and
VIS = (yoys — yiys)S .

This implies H?4(S) = 0 and thus, by what we have seen above, HZ(R/fR) = 0.
Now we show ara(I(R/fR)) = 2: We assume ara(I(R/fR)) # 2; then we clearly have ara(I(R/fR)) = 1.
Let h € R be such that

I(R/fR) = Vh(R/[R)

holds. This implies

VIS =VhS .

We have seen before that
VIS = (yoys — yiys)S

holds. S is a unique factorization domain and so there exist N > 1 and s € S such that

h = (yoys — yiys)"™ - s and (yoy3 — yiys) [s

hold. From h € R; C S it follows that all terms y3°y{" y52y5® in h € S have the property o+ as = a1 +ao;

o, 1, Q2 (X3

on the other hand, all terms y5°y y52y5® of (yoys —yiys)™ have the property (ag+asz) — (a1 +az) = —2N.
So we can assume that all terms yg°y7 y52y5°® of s have the property (g + ag) — (o + a2) = 2N. But then

s cannot be a unit in S and so
(yoy3 — yiys)S = VhS = (yoys — yiys)S N VsS

clearly leads to a contradiction.

5.2 Criteria for ara(l) <1 and ara(l) <2

5.2.1 Remark

Let (R, m) be a noetherian local ring. By E := Er(R/m) we denote an R-injective hull of R/m. Let I be an
ideal of R. Then the following statements are equivalent:

(i) ara(I) < 1.

(ii) HY(R) = 0 for i > 2 and 3f € I : f operates surjectively on H}(R).

(ili) HY(R) = 0 for i > 2 and 3f € I : f operates injectively on D(H}(R)).

(iv) HY(R) =0 fori >2and I £ UpeAssR(D(H}(R))) p.

Furthermore, if conditions (ii) or (iii) hold, we have /I = \/fR.

Proof:

(ii) — (iv) are obviously equivalent, we show (i) <= (ii):

(i) = (ii): Assume v/T = \/fR for some f € R. f clearly operates surjectively on H}R(R); but VI = +/fR
implies H} = H}R.

(ii) =(i): H} (L) is right-exact on the category of R-modules. Therefore we have an exact sequence

HY(R) L HY(R) — HYR/fR) =0 .
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Thus H}(R/fR) = 0 holds, implying H}(R/p) = 0 for all p € Spec(R) containing f. But because of our
hypothesis, this means that we have H%(R/p) = 0 for all p € Spec(R) containing I and for all 4 > 1. Thus f
must be contained in every prime ideal of R containing I. v/ = v/fR follows.

5.2.2 Remark
Now we consider the following situation (referred to from now on as graded situation): Let K be a field,
leN,

R =K[Xo,...,XnN]/J

(N eN,J C K[Xy,...,Xn]| a homogenous ideal, where every X; has a multidegree in Nl)7
I C R a homogenous ideal,

m the maximal homogenous ideal (Xo,...,Xy)R of R, E := Eg(R/m) an R-injective hull of R/m; E has a
natural grading and serves also as a *-R-injective hull of R/m. Here we follow the use of *-notation from
[BS, in particular sections 12 and 13]. *D shall denote the functor from the category of graded R-modules
to itself defined by

(*D)(M) := *Hompg(M,E)

for a graded R-module M. We define the homogenous arithmetic rank of I to be

ara”(I) := min{l € N|3r1,...,7; € R homogenous : VI = /(r1,...,7)R}

and we set
I" := {x € I|z is homogenous} .
Now, just like in the local case, one can show that the following statements are equivalent:
(i) ara(I) < 1.
(i) HY(R) = 0 for i > 2 and 3 homogenous f € I : f operates surjectively on H}(R).
(iii) HY(R) = 0 for 4 > 2 and 3 homogenous f € I : f operates injectively on (*D)(H}(R)).
(iv) HY(R) =0 for i > 2 and I" ¢ Upeassn(pyai (ry)) P-
Furthermore, if conditions (ii) or (iii) hold, we have /I = /fR.

5.2.3 Definition
Let (R, m) be a noetherian local ring and X C Spec(R) a subset. We say that X satisfies prime avoidance

Jc U

peX

if, for every ideal J of R,

implies
dpoe X:JCypy .

5.2.4 Definition
In the graded situation, let X C Spec”(R) := {p € Spec(R)|p homogenous} be any subset. We say that X

satisfies homogenous prime avoidance if, for every homogenous ideal J of R,

Jhe

pex
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implies

dpoeX:JCypy .

5.2.5 Theorem
(i) Let (R, m) be a noetherian local ring and I an ideal of R such that

0=H3(R)=H}(R)=... (1)
holds. Then
ara(l) <1 <= Assgp(D(H;(R))) satisfies prime avoidance .
(ii) Let R be graded and I C R an homogenous ideal such that 0 = H2(R) = H3(R) = .... Then

ara"(I) <1 <= Assg((*D)(H}(R))) satisfies homgenous prime avoidance .

Proof:
(i) We set

=: Let J C R be an ideal such that

J C U .

pEAssr(D)

We claim that Homg(R/J, D) # 0. Assumption: Homg(R/J, D) = 0: Tt is a general fact that for every ideal
K C R and every R-module M one has

Homp(R/K, D(M)) = D(M/KM) .
(Proof of this general fact: If K = (kq,...k;)R for some ki, ...,k € R, the exact sequence
R! (k?I:)’kl) R can. R/K — 0

induces an exact sequence

ppt PR A e o

The functor D is exact and so we get an exact sequence

0 — D(M/KM) ‘2 D(M) b D(M)" |

from which the statement Homp(R/K, D(M)) = D(M/KM) follows.)
We apply this general fact in the case K = J, M = H}(R) and conclude that

0 = Hompg(R/J, D(H}(R))) = D(H;(R)/J H}(R)) = D(H](R/J)).

For the last equality we use the fact that the functor Hj is right-exact (because of hypothesis (1): 0 =
H?(R) = H}(R) = ...). But D(H}(R/J)) = 0 implies that H}(R/J) = 0. Again, because of hypothesis (1),
it follows that H}(R/p) = 0 for all prime ideals p of R containing .J. Clearly, the last condition implies I C p
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for all p containing J, that is I C v/J. There is an = € R such that v = vzR. Hence z! € J for | >> 0.

So there is a p € Assg(D) containing z. Now we have

0= H,r(R/p) = Hi(R/p)

and thus
0 = D(H}(R/p)) = Homg(R/p, D(H;(R)))

contradicting p € Assp(D). Thus the assumption Hompg(R/J, D) = 0 is false and the claim Hompg(R/J, D) #
0 is proven; so there exists a d € D \ {0} such that J C anng(d).

<: We have to show the existence of an x € I operating surjectively on H}(R). Assume to the contrary

I1C Up.

peAssr(D)

From the hypothesis we get a pg € Assg(D) such that I C pg. But this pg would satisfy

0 Hj(R/po) =0 .

(ii) The proof consists mainly of a graded version of the proof of (i):
=: Let J C R be an homogenous ideal such that

Jhc U p

pE€Assr((*D)(H} (R)))
and z € R" an element such that vT = vzR. We assume
Hompg(R/J,* Homgz(H:(R),E)) = 0

and remark that for the first Hom (in the preceding formula) it would not make any difference if we replaced
Hom by *« Hom. This implies
*Homg((R/J) ®r Hi (R),E) =0

and hence H}(R/J) = 0. Thus I C q for all prime ideals q of R containing J. This implies the existence of
a po € Assp((xD)(HL(R))) such that x € pg contradicting H}(R/po) # 0.
«: We assume that for every z € I" there exists a p € Assg((*D)(HL(R))) such that = € p, i. e.

" C U p .

pEAssg(x Homp (H} (R),E))

There is a pg € Assg(* Homg(H}(R), E)) containing I, contradicting H}(R/po) # 0.
Theorem 5.2.5 implies criteria for ara(I) < 2 resp. for ara”(I) < 2:

5.2.6 Corollary

(i) Let (R, m) be a noetherian local ring and I an ideal of R. Then ara(/) < 2 if and only if there exists g € T
such that 0 = H2(R/gR) = H3(R/gR) = ... and such that Assg(D(H}(R/gR)) satisfies prime avoidance.
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(ii) Let R be a graded ring and I an ideal of R. Then ara”(I) < 2 if and only if there exists a homogenous
g € I such that 0 = H2(R/gR) = H3(R/gR) = ... and such that Assg(D(H}(R/gR)) satisfies homogenous
prime avoidance.

Proof:

= follows immediately from theorem 5.2.5 (i) resp. (ii); for the other implication observe that the conditions
on the right side imply arag,4r(//(g9R)) = 1 resp. ara’]%/gR(I/(gR)) = 1 again by theorem 5.2.5 (i) resp.

(ii).

5.3 Differences between the local and the graded case

5.3.1 Lemma

Let R be a graded domain and f € R\{0}. Then the ideal /f R is homogenous if and only if f is homogenous.

In particular, for any homogenous ideal I of R we have
ara(l) <1 <= ara"(I) <1 .

Proof:
< is clear. =: R is Nl—graded. This given grading may be seen as [ given N-gradings on R and so we may
assume [ = 1. Let & := deg(f). Then fs(=degree-d-part of f) € /fR,i. e. In € N* and 3g € R: f? = fg.

R is a domain and so f (as well as ¢g) must be homogenous.

5.3.2 Remark
In the graded situation, given graded R-modules M and N,

* Homp (M, N) C Hompg (M, N)

holds. For finite M one has equality here, but for arbitrary M equality does not hold in general. In fact one
has
Assgp(x*Homp (M, N)) C Assg(Homp (M, N))

in general as we will see below in the case M = H}(R), N = E := Er(R/m); then we will also see that, in
some sense, Assp(Homg(H}(R), E)) is much larger than Assg(* Homg(HL(R), E)).

5.3.3 Definition and remark
Let R be a graded ring and I C R homogenous ideal such that 0 = H2(R) = H}(R) = .... Let f € I be an

element, not necessarily homogenous. Now we define two conditions on I and f:

(C1) VpeAssp(Homp (1 (R),E) S € P

(C2) VpeAssr (+ Homp (11} (R).E) ] & P

Condition (C1) is just a reformulation of \/(I) = v/fR (see the proof of remark 5.2.1). In contrary to (C}),
all objects in (Cq) are graded and so condition (C3) may be seen as a graded version of the condition ”f

generates I up to radical”; furthermore (C1) clearly implies (Cs).
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Terminology: For a given homogenous ideal I of R and a given element f € I we say that condition (C;)(Z; f)
holds if (C;) holds for I and f (i =1,2).

In the next section we will investigate to what extent condition (C;) differs from condition (C3). Theorem
5.3.5 will show that there are (in fact many) non-homogenous f € I such that (C3)(I; f) holds, but there
are no non-homogenous f € I such that (C1)(I; f) holds.

5.3.4 Remark
It is easy to see that for every homogenous element g € I the conditions (C1)(I; f) and (C3)(I; f) are

equivalent.

5.3.5 Theorem
(i) Let I be a homogenous ideal of a graded ring R such that ara"(I) < 1. Let g1,...,g, € I\ {0} be

homogenous of pairwise different degrees (in Nl) and such that

\/j: \/(gla-”agn)R :

Then
(C2)(I;01 + ...+ gn) holds.

(ii) Let I be a homogenous ideal of a graded ring R (and such that 0 = H2(R) = H3(R) = ...). Let g€ I

be a non-homogenous element. Then
(C1)(I; g) does not hold.

Proof:
(i) We have H}(R/(g1,---,9n)R) = 0 and hence

(glv"'agn)RZp

for all p € Assgp(* Hompg(H}(R),E)). Theorem 5.2.5 (i) implies

((gla"'7gn)R)h .Z U p .

pEAssgr(x Homg(H} (R),E))

Because of the different degrees of the g; we conclude

(g1+.--+9n)R L U P

pEAssr(x Homg (H; (R),E))

and the statement follows.

(ii) The first statement of lemma 5.3.1 implies that if R is a graded domain and I C R is a homogenous
ideal such that ara(l) < 1 ( <= ara”(I) < 1), every non-homogenous g € I does not operate injectively on
Homp(H}(R),E). Furthermore, if ara(l) > 1 ( <= ara(I) > 1), it is clear (use the ideas of section 5.2)
that no g € I operates injectively on Homg(H}(R), E).

5.3.6 Remark
While in the situation of theorem 5.3.5 statement (i) says there are (many) non-homogenous f € I operating

injectively on (xD)(HY(R)), (ii) says there are no non-homogenous f € I operating injectively on D(H}(R)).
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6 Applications

6.1 Hartshorne-Lichtenbaum vanishing

The (more difficult) part of Hartshorne-Lichtenbaum vanishing theorem (for another reference, see, e. g.,

[BS, 8.2.1]) says that for an ideal I in a noetherian local complete domain (R, m) there is the implication
HIm(R) £0=VI=m .

We present two new proofs for it: theorem 6.1.2 works with the normalization of R and the Matlis dual of the
local cohomology module in question, while theorem 6.1.4 uses the fact that, over a noetherian local complete
Gorenstein ring (S, m) of dimension n+1 and every height n prime ideal 8 in S, one has D(Hy(S)) = g;/S
(this is lemma 3.2.1); it is remarkable that the proof of theorem 6.1.4 uses (this is hidden in the proof of
lemma 6.1.3) the ring structure on gc\p

6.1.1 Theorem

Let (R, m) be a noetherian local ring and M a finitely generated R-module. Then HSme(M)(M) #0.
Proof:

It is well-known and not difficult to see that for every n € N, every ideal I C R and every finitely generated
R-module N the following statements are equivalent:

(i) Hi(N) =0 for all i > n.

(ii) Hi(R/p) =0 for all i > n and all p € Suppg(N)

This fact implies (setting d := dimg(M) = dim(R/anng(M))) HL (M) # 0 <= HL(R/anng(M)) # 0.
Thus we may assume that M = R and R is a domain. Again, we set d := dim(R) and choose a system
of parameters z1,...,74 € R for R. Theorem 3.1.3 (ii) implies {0} € Assgr(D(H%(R))); in particular,
Hin (R) # 0.

6.1.2 Theorem
Let (R, m) be a noetherian local complete equicharacteristic domain, n := dim(R) > 1 and I C R an ideal.
Then

H}(R)#0 < VI=m

holds.

Proof:

<= follows from theorem 6.1.1. =>: By induction on n, the case n = 1 being trivial; we assume that n > 1
and that the theorem is true for smaller n. Let R be the normalization of R. R is a noetherian local (as
R is a domain) complete equicharacteristic domain and is module-finite over R, i. e. dim(R) = dim(R); we
denote the maximal ideal of R by mz. One has H?R(R) = H}(R) # 0, because of Suppx(R) = Spec(R). Tt
suffices to show \/E = mp and so we may assume that R is normal.

We choose 1, ...,x, € I such that \/(z1,...,7,)R = VI and define the subring Ry := k[[z1,...,2,]] of R,
where £ is any fixed coefficient field of R; by mo we denote the maximal ideal of Ry. Because of Hy, (R) # 0
we may conclude dim(Ry) = n, i. e. Ry is a formal power series ring over k in the n variables 1, ..., z,.
We set

x:=ax,l, ={re R|V¢eHomRO(R,RO)<P(T) € xRy} .
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I, is an ideal of R such that R -z C I; furthermore, we have I, C R because of
0 7é HomRo (H7(R)7 Er, (k)) .

For every r € I, and every ¢ € Hompg, (R, Rg) we have im(r - ¢) C Ry -« and thus there exists o €
Hompg, (R, Ro) such that 7 - ¢ = x - ¢g. Therefore, = operates in a canonical way on the finite R-module
Homp, (R, Ro) (note that H}(R) is artinian as surjective image of the artinian R-module HJ, (R); we conclude
that = (as an element of Q(R), the quotient field of R) is integral over R; But R is normal and so we have

r € R - x; this implies I, = R - z. We have
Anng(Hompg, /o, (R/I., Ro/tRo)) = I, = R-x

and for every P € Assg(Homp,/zr,(R/I;, Ro/TRy)) there exists a non-trial Ry/xRo-linear map R/P —
Ro/xRy; by an easy Matlis duality argument, we conclude H} ' (R/%) # 0 and, therefore, height(f) = 1
and /T + 9 = m (induction hypothesis). We have shown

Assgp(Homp, /o r, (R/ Iz, Ro/2Ro)) = Ming(R/zR)
and /I + P =m for every P € Ming(R/zR). Now, because of

N PB=vVeRCVI

PBeMing(R/zR)

it follows that /T = m.

6.1.3 Lemma

Let (S, m) be a noetherian local regular ring, P C S a prime ideal and f € P an irreducible element. Then
f operates injectively on S'TB/S

Proof:

We take a primary decomposition

fSg=aqn...Naqy

of fgq\g such that height(q;) =1 (¢ = 1,...,n). f € P implies n > 1. Clearly we have f € q; NS and
q1 NS C S is a primary ideal of height one (the canonical map S — é% is flat and thus going-down holds).
On the other hand fS C S is a prime ideal of height one. Therefore we have

fS2qmnS2fSpNns
and hence fS = f§c;3 N S. The statement follows.

6.1.4 Theorem
Let (R, m) be a noetherian local complete domain and I C R an ideal such that v/7  m. Then

HP " (R) =0

holds.
Proof:
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Set n := dim(R). For proper ideals I; C I3 of R the canonical map H7,(R) — H7, (R) is surjective and so
we may assume [ is a prime ideal of R of height n — 1. Now we choose S, and p as in lemma 3.2.2. Then

we have

1™ (R) = HE™ P (5/1S) ®g/1s R

(f is a generator of the height one prime ideal ker(p). Lemmas 3.2.1 and 6.3.1 imply that f operates

injectively on DS(Hinm(R)(S)) and thus the statement follows.

6.2 Generalization of an example of Hartshorne

The idea of this subsection is that, by Theorem 4.3.4, the Matlis duals of certain local cohomology modules
have infinitely many associated prime ideals; but then this local cohomology module can not be artinian. It
turns out that this leads to a generalization of an example of Hartshorne ([Hal, section 3]); more details on
this generalization can be found in [HS2, section 1]. The author thanks Gennady Lyubeznik for drawing his

attention to this example.

6.2.1 Example
Let k be a field, R = k[[X1, X2, X3, X4]] a power series algebra over k in four variables, I = (X7, X3)R and,

for every A € k, define
P = (Xg + AX1, X4 +)\X2)R .

Clearly, every p, is a height two prime ideal of R and, by theorem 3.1.3 (v), is associated to D = D(H%(R)).
On the other hand, for every A € k, one has

pi= X1 X4+ XoX3 € py

(because of p = X (X4 — AX32) + X2(X3 + AX1)). Therefore, at least if k is infinite, D has infinitely many

associated primes containing p. This implies that
Hompg(R/pR, D)
cannot be finitely generated. But Hompg(R/pR, D) is the Matlis dual of
H7(R/pR)
and so H2(R/pR) cannot be artinian.

6.2.2 Remark
This is essentially Hartshorne’s example ([Hal, section 3]), the main difference is that Hartshorne works over
a ring of the form k[X3, X4][[X1, X2]], while we work over a ring of the form k[[X1, X2, X3, X4]]; but the two

versions are essentially the same, because the module
Hix, x,) (K[X3, Xa][[X1, Xo]] /(X1 X4 + X2 X3))

is naturally a module over k[[X7, Xs, X3, X4]], because its support is {(X1, X2, X3, X4)}. This is true,
because for every prime ideal p # (X1, X2, X35, X4) of k[X3, X4][[X1, X2]] containing X7 X, + XoX35 the
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ring (k[X3, X4][[ X1, X2]]/(X1X4+ X2X3)), is regular, and so Hartshorne-Lichtenbaum vanishing shows that
H{x, x,) (F[X5, Xa][[X1, Xo]]/ (X1 X4 + X2X3)), = 0.

A similar technique like in the example above works to show that H} ?(R/pR) is not artinian in the
general situation R = k[[X1,...,X,]], n > 4, I = (X1,...,X,,—2)R and p € R a prime element such
that p € (X,,—1, Xn)R, even if the field k is finite:

6.2.3 Theorem

Let k be a field, n > 4, R = k[[X1,...,Xn]], I = (X1,...,Xn_2)R and p € R a prime element such that
p € (X,_1,X,)R. Then H} ?(R/pR) is not artinian.

Proof:

Set D := D(H} 2(R)). If p & I, it is easy to see that

Suppg(H} *(R/pR)) = V(I + pR) ,

the set of prime ideals of R containing I +pR, and so H?~?(R/pR) is not artinian (it is not zero-dimensional).
We assume p € I: If H} *(R/pR) was artinian, D(H} *(R/pR)) would be finitely generated; but we have

seen before that, because of the exactness of D and the right-exactness of H7 2,
D(Hj~*(R/pR)) = Homp(R/pR, D) ,

and from Theorem 4.3.4 we know that the latter module is not finitely generated (it has infinitely many

associated prime ideals).

6.2.4 Remark Marley and Vassilev have shown

Theorem ([MV, theorem 2.3])
Let (T,m) be a noetherian local ring of dimension at least two. Let R = T[x1,...,x,] be a polynomial
ring in n variables over T, I = (z1,...,%,), and f € R a homogenous polynomial whose coefficients form a

system of parameters for T. Then the *socle of H} (R/fR) is infinite dimensional.

In their paper [MV], Marley and Vassilev say (in section 1) that Hartshorne’s example is obtained by letting
T = k[[u,v]],n = 2 and f = ux + vy; there is a slight difference between the two situations that comes from
the fact that Hartshorne works over a ring of the form k[x,y][[u,v]] while Marley and Vassilev work over a

ring of the form k[[u,v]][x,y]. The two rings are not the same. But, as

Supp (H{, o) (B/ (uy + v2))) = {(2,y,u,v)}

(both for R = K[z, y][[u,v]] and for R = k[[u, v]][z,y]), the local cohomology module in question is (in both
cases) naturally a module over k[[z,y,u,v]] and, therefore, both versions are equivalent, i. e. the result of

Marley and Vassilev is a generalization of Hartshorne’s example.

6.2.5 Remark
[MV, theorem 2.3] and theorem 6.2.3 are both generalizations of Hartshorne’s example, but, due to different

hypotheses, they can only be compared in the following special case: k a field, n > 4,

RO = k[[anlaXnH[Xla cee 7Xn72] 3
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R=Fk[X1,...,X,]] ,

I=(Xy,...,X,-2)R, p € Ry a homogenous element such that p is prime as an element of R. Then [MV,
theorem 2.3] says (implicitly) that
H} (R/pR)

is not artinian, if the coefficients of p € Ry in k[[X,,—1, X,]] form a system of parameters in k[[X,,_1, X,]],
while theorem 6.2.3 says that the same module is not artinian if none of these coefficients of p is a unit in
k[[Xn—len”-

6.3 A necessary condition for set-theoretic complete intersections

Let (R, m) be a noetherian local ring and I = (x1,...,2;)R = I C R a set-theoretic complete intersection
ideal (in the sense that its height is i). Then H%(R) # 0 (this can be seen by localizing at a height-i prime
ideal of R containing I). On the other hand, statement (ii) from theorem 6.3.1 below presents a necessary
condition for H}(R) # 0.

6.3.1 Theorem

Let (R, m) be a noetherian local complete domain containing a field k and 1, ..., x; a sequence in R (i > 1).
Define Ry := k[[z1,. .., z;]] as a subring of R.

(1) The following two statements are equivalent:

(@) Hiy, ..apr(R) # 0.
(6) Hompg, (R, Ro) # 0 and dim(Ry) = i.
(

ii) If the equivalent statements of (i) hold, one has
RNQ(Ry) =Ry ,

where Q(Ryp) denotes the quotient field of Ry and where the intersection is taken in the quotient field Q(R)
of R.

Proof:

We denote the maximal ideal of Ry by mg.

(i) We have

szl,wb)R(R) = R ®RO Héwh...wi)Ro (RO)
and, thus, Hl('m’“_,m) Ro (Ro) # 0 implies dim(Ry) = 4; therefore we may assume that Ry is a formal power

series ring in z1,...,x;. Therefore, we may assume that Ry is i-dimensional. Let Eg,(k) be a fixed Ro-

injective hull of Ry. We have

HomRo (Hérl,...,zi)R(R)v Er, (k)) = HOInRO (R @Ry Himl,...,zi)Ro (RO)’ Er, (k))
= Homp, (R, Hompg, (H(s, .5, (Ro),Er,(K)))
= HOIHR0 (R, Ro) B

where we have used the fact that Ry is a formal power series ring in x1, ..., x; over k. This identity shows
the stated equivalence.

(ii) Under the given assumptions, we have Hompg, (R, Ro) # 0. Let
¢ € Homp, (R, Ro)
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be any non-zero element and let g € Ry \ {0}, € R such that ro-r € Ry. We have to show r € Ry: We set
T =TT

and conclude

This shows ,
T
p(1)r = w(l)rg = ¢(r) € Ry
On the other hand, we have
rE = rir?
and thus
roe(r?) = i p(1)
and
2 7’62 2
p()r® = <p(1)¥ =¢(r’) € Ry .

Continuing in the same way, one sees that, for every [ > 1, one has
o(1)r' € Ry .

But this implies that the Ry-module
(1) < 1,7, 7% ... >pg,

is finitely generated (< 1,7,72,... >p, stands for the Ro-submodule of R generated by 1,7,7%,...). But, as
R is a domain,
<1,mr%...> Ry

is then finitely generated, too, i. e. r is necessarily contained in Ry.

6.4 A generalization of local duality

Over some rings (e. g. over complete Cohen-Macaulay rings), there is a correspondence between certain
Ext-modules on the one hand and certain local cohomology modules on the other hand; this correspondence
is given (in both directions) by taking the Matlis dual and is called local duality. This result can e. g. be
found in [BS, section 11]. In the form in which it is usually presented, local duality works only if the support
ideal is m, i. e. if one takes local cohomology with support in m. But, below we generalize this result to a

large class of support ideals I.
6.4.1 Theorem
Let (R, m) be a noetherian local ring, I C R an ideal, h € N such that
HY(R)#0 < l=h
holds and M an R-module. Then, for every i € {0,...,h}, one has
Exty, (M, D(H}(R))) = D(H; " (M))
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Proof:
We take the sequence of functors (D o H?ii)ieN from the category of R-modules to itself; of course, HY =0

for every M < 0. Given a short exact sequence of R-modules
0—-M —-M-—-M"—0,

we clearly get an exact sequence of the form
0 — D(H}(M")) — D(H}(M)) — D(H}(M")) —
— D(H} ' (M")) —
(note that, by our hypothesis, H* ™ (M) = M'®@gH?™ (R) = 0). In the case i = 0 we get, for any R-module
M

)

D(H}(M)) = Homp(H} (M), Er(R/m))
= Homg(M ®r H}(R), Er(R/m))
= Hompg (M, Homgz(H?(R), Er(R/m)))
= Hompg(M, D(H}(R))) .
) =

Finally, for every ¢ > 0 and every m € N, we have H}} Y(R™ 0 and hence H “(F) = 0 for every free

R-module F'; we get
D(H; ' (F)) =0
for every ¢ > 0 and every free R-module F'. By some well-known homology theory, the last three properties

imply our statement.

6.4.2 Remark
If, in the situation of theorem 6.4.1, R is complete and Cohen-Macaulay and I = m (then h = dim(R)

necessarily), the statement takes the form
Exti (M, D(Hw ™" () = D(Ha™ "~ (M)

for every R-module M and every i € {0,...,dim(R)}. If we assume furthermore that M is finitely generated,

then Ho™()~ ‘(M) is artinian and the above statement implies (in fact, is equivalent to)

D(Extip (M, D(Hw™ " (R))) = Ha™ 07 (M) .
We study the R-module D( dlm(R)(R)): By Matlis duality, it is finitely generated. We calculate its type,
which is defined as the following R/m-vector space dimension:
dim i (Extiy™ ™ (R /m, D™ ™ (R)))) = dimpm(D(HY, (R/m)) = 1

(note that, for the first equality, we use theorem 6.4.1 again). The m-depth of D( dlm(R)(R)) is dim(R)
(this follows from theorem 1.1.2, take any parameter sequence z of R, it will be a regular sequence on
DHI™B) (R, i. e. D( dlm(R)(R)) is a maximal Cohen-Macaulay module (over R). By definition, these
properties show that

DH"™(R)) = wr
is a canonical module for R, and the statement of theorem 6.4.1 becomes

D(Ext}y(M,wr)) = Ha "7 (M) .

Clearly, this is a version of the local duality theorem (see, e. g., [BS, section 11] for more details on local
duality).
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7 Further Topics

7.1 Local Cohomology of formal schemes

In some cases we can consider the Matlis duals of local cohomology modules as certain local cohomology

modules of the structure sheaf of some formal scheme (see [Og, in particular section 2]), here are the details:

7.1.1 Remark
Let (R, m) be a noetherian local Gorenstein ring and I an ideal of R. We define

X :=Spec(R),Y :=V(I) ,

i. e. Y is the closed subscheme of X defined by I. We denote by X the formal completion of X along Y
and by p the closed point of the topological space underlying X (note that as topological spaces X and X

are the same). Then, for every i € N, there is a canonical isomorphism
i dim(R)—i
Hj (X, 0x) = DH?™ P (R))

(see [Og, 2.2.3]). This follows essentially from local duality, the fact that H: (R/IV) is artinian for every

v > 1 and the existence of a short exact sequence
0 — R'invlim, Hy '(R/I") — H,(X,Ox) — invlim, H, (R/1") — 0 .

Note that local cohomology of a (formal) coherent sheaf on a formal scheme is defined in the sense of

Grothendieck, i. e. as (local) cohomology of an abelian sheaf on a topological space.

7.2 D(H%(R)) has a natural D-module structure

Let k be a field and R = k[[X7, ... X,,]] a power series ring over k in n variables. Let
D(R.k) C Endy(R)

be the (non-commutative) subring defined by the multiplication maps by r € R (for all » € R) and by all
k-linear derivation maps from R to R. D := D(R, k) is the so-called ring of k-linear differential operators
on R. [Bj] contains material on the ring D(R, k) and on similar rings; D-modules in relation with local
cohomology modules have been studied in [Lyl]. For i = 1,...,n let 9; denote the partial derivation map

from R to R with respect to X;. Then, as an R-module, one has

(1) D(R,k) = @y, i,exR-0' ... 0

O

Now, let I C R be an ideal and i € N. We will demonstrate that there is a canonical left- D-module structure
on D(H%(R)) (the following idea was inspired by Gennady Lyubeznik). To do so, by identity (1), it is
sufficient to determine the action of an arbitrary k-linear derivation 6 : R — R on D(H%(R)), to extend it
to an action of D(R, k) on D(H4(R)) and to show that this action is well-defined and satisfies all axioms of

a left-D-module. The derivation § induces a k-linear map
R/I" — R/I"™Y (v>1)
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and, in a canonical way, a map of complexes from the Cech complex of R/IY with respect to X1,..., X, to

the Cech complex of R/I"~! with respect to X1,...,X,, (v>1). By taking cohomology, we get a map
L (R/I) — B (RN (0= 1)
where m stands for the maximal ideal of R. These maps induce a map
invlim,en (Hy ' (R/1Y)) — invliimyen (Hy ™" (R/17))

(note that the maps of the above inverse system are induced by the canonical epimorphisms R/I? — R/IV™1).
But, by local duality and H(R) = dirlim,en(Extl(R/IY, R)), one has

invlim,en (HL(R/1°)) = D(dirlim,en(Exts(R/IY, R))) = D(HY(R)) .

Now, having determined the action of the element § on D(H%(R)), by (1) it is clear how to extend this to an
action of D(R, k) on D(H%(R)) such that D(H%(R)) becomes a left-D-module (note that, for every k-linear
derivation § : R — R and every r € R, we have §(r-d) = §(r) -d+1r-5(d), i. e. the action of D on D(H%(R)

makes it a left-D-module). We have seen (in various situations) in sections 2, 3 and 4, that, in general,
D(H}(R))

has infinitely many associated primes. On the other hand, one knows from [Ly1, Theorem 2.4 (c)] (at least
if char(k) = 0), that every finitely generated left- D-module has only finitely many associated prime ideals
(as R-module, of course). This shows that, in general, D(H%(R)) is an example of a non-finitely generated
left-D-module. In particular, D(H4(R)) is not holonomic in general (see [Bj] for the notion of holonomic

modules).

7.3 The zeroth Bass number of D(H%(R)) (w. r. t. the zero ideal) is not finite in general

Let (R, m) be a noetherian local domain, ¢ > 1 and x1,...,x; € R. Then, as we have seen in theorem 3.1.3
(ii), one has
{0} € Assr(D(H{,, ... s, r(R)))

in some situations; actually, if conjecture (*) holds, this is true provided Héwl,mm)R(R) # 0 holds. It is
i

natural to ask for the associated Bass number of D( (1,

of

Lenr(R), 1. e. the Q(R)-vector space dimension

D(Hle,xl)R(R)) @R Q(R) ’

where Q(R) stands for the quotient field of R. As we will see below, this number is not finite in general;
more precisely, we consider the following case: Let k be a field, R = k[[X1, ..., X,]] a power series algebra
over k in n > 2 variables, 1 <i < n and I the ideal (X7,...,X;)R of R; in this situation

dimgg) (D(H}(R)) ®r Q(R)) = o0

holds, see theorem 7.3.2 below for a proof.
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7.3.1 Remark

Note that in section 4.3 (see, in particular, the proof of remark 4.3.6) we introduced some notation on
polynomials in ”inverse variables” and we explained and proved (note that the situation here is more general
then in remark 4.3.6, where i was n — 2, but the proof of 4.3.6 works in this more general situation too) the
following formulas:

HY(R) = k[[Xis1,. - Xl X7, X1

Er(k) = k(XY XY
and
D(H}(R)) = k[X Y, ... X, [ Xy, .., Xa]) -

Also note that the latter module is different from and larger than the module

kX1, Xall[X3h. - X

The following proof is technical; its basic idea is the following one: Let k be a field, R = k[[X, Y]] a power

series algebra over k in two variables; then we have
Hi p(R) = k[[Y]][X ']

and
D= D(Hxg(R)) = kY 1[[X]] .

dy =Y Y VX!

leN
=14+Y ' X+Y*X24+V7V°X3+...eD

Set

and let r € R\ {0} be arbitrary. Because of r # 0 we can write
r=X%"h4X0.g
with some h € R, g € k[[Y]]\ {0}. Then, at least for [ >> 0, the coefficient of r - dy in front of X! is
By —(—a=1)? +g- y—(-a)?
for some h* € k[[Y]]. Now, if we write
g= aY? + cb+1Yb+1 +...
for some b € N, ¢, # 0 and observe the fact
—(l—a+b<—(1l—-a—-1)* (1>>0) ,

it follows that the term
c - y—(=a)*+b

(coming from h* - y-(=a-1? 4 g- Y_(l_“)z) cannot be canceled out by any other term. In fact, for [ >> 0,

the lowest non-vanishing Y-exponent of the coefficient in front of X!, is —(I — a)? + b. The crucial point is
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that the sequences —(I —a)? + b and —I? agree up to the two shifts given by a and b. This means that some

information about ds is stored in rds.

7.3.2 Theorem

Let k be a field, R = k[[X1,...,X,]] a power series algebra over k in n > 2 variables, 1 < i < n and I the

ideal (Xy,...,X;)R of R. Then
dimg(r)(D(H(R)) ®r Q(R)) = 00

holds.
Proof:

As the proof is technical we will first show the case n = 2,7 = 1; in the remark after this proof we will

explain how one can reduce the general to this special case. Set X = X;,Y = X5 and
D := D(H}(R)) = k[Y 1[[X]] .
For every n € N\ {0}, set

dy = ZY—Z” -X'eD .
leEN

It is sufficient to show the following statement: The elements (d,, ® 1),en\ {0} in D ®@r Q(R) are Q(R)-linear

independent:

We define an equivalence relation on ZN (the set of all maps from N to Z, i. e. infinite sequences of integers)
by saying that (a,,), (b,) € ZN are equivalent (short form: (a,,) ~ (b)) iff there exist N, M € N and p € Z

such that

an+1 =byi1 +pany2 =byy2 +p, ...

hold. It is easy to see that ~ is an equivalence relation on ZN. For every d € D, we define §(d) € ZN in the

following way: Let f; € k[Y ~!] be the coefficient of d in front of X'; we set

if fi =0 and

if s is the smallest Y-exponent of f;, i. e.
fi=cYS 41 YT b -l
for some ¢z # 0.
Now suppose that r1,...,7,, € R are given such that r,, # 0. We claim that
0(ridy + - + rpgdng) ~ 9(dng)

holds. Note that if we prove this statement we are done, essentially because then rid; +

be zero.
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It is obvious that one has §(d + d’') ~ §(dy,) for given d,d’ € D such that
5(d) ~ 6(dn,),0(d') ~ 6(dny,), N2 > Ny .

For this reason it is even sufficient to prove the following statement: For a fixed n € N\ {0} and for any
r € R\ {0} one has
8(rdy) ~ d(dy,) .

We can write
’I":Xa+1-h—|—Xa-g

with a € N,h € k[[X,Y]] and g € k[[Y]] \ {0}. We get

S(r-dy) ~ 6( Z (hy —(=a=D" 4 gy—(-a)") x1)
1>a+1

and we write

g = chb + cb_HYHl + ...
with ¢, € k*. Now, because of
—(l-a)"+b<—-(l—-a-1)" (I>>0)

it is clear that, for [ >> 0, the smallest Y-exponent in front of X' (of the power series 7 -d,,) is —(I —a)" +b.
Therefore, one has
8(r-dy) ~ (=1") ~6(dy)

and we are done.

7.3.3 Remark
A proof of the general case of theorem can be obtained e. g. in the following way: First, we use theorem

3.1.2 repeatedly to get a surjection

Hl(-Xl,...,Xi)R(R) - H?);ll,___,xnfl)R(R)

and hence an injection
D(H?);l x, nr(B) = D(Hx, . x)r(R)

.....

which allows us to reduce to the case i = n — 1; then it is possible to adapt our proof of theorem 7.3.2 with

some minor changes: Instead of working with maps N — Z, one works with maps
Nn—l /4

and also with multi-indices instead of indices.

7.4 On the module H?(D(H!(R)))
In the previous section we were interested in modules of the form
D := D(H}(R)) ,
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where [ is an ideal in a local ring R. In this section we compute the local cohomology module
H} (D)

Our results say (essentially) that this module is Eg(R/m) if I is a set-theoretic complete intersection and it

is either Er(R/m) or zero in general (see theorems 7.4.1 and 7.4.2 for precise formulations and proofs).

7.4.1 Theorem
Let (R, m) be a noetherian local complete Cohen-Macaulay ring with coefficient field k and z1,...,2; € R
(i > 1) a regular sequence in R. Set I := (x1,...,2;)R) (I is a set-theoretic complete intersection ideal of
R). Then one has

H; (D(H}(R))) = Er(k) -

Proof:
First we show a special case: Assume that R = k[[X1,...,X,]] is a formal power series algebra over k in
n variables and x1 = Xy,...,2; = X;. Then, as we have seen in the proof of remark 4.3.6 (note that the

situation here is more general then in remark 4.3.6, where i was n — 2, but the proof of 4.3.6 works in this

more general situation too), we have

HY(R) = k[ Xit1, - X)) [ X5 XY

3

and
DH}(R)) = kXY, .., X, X1, ..., X ]]

(again, see section 4.3, in particular the proof of remark 4.3.6 for the notation). As the functor HY is

right-exact, we have

H}(D(H;(R))) = Hi(R) ®&r D(H}(R))
= k[[Xig1, - XX L X @r RIX - XX X
O rxt L x0T

= Er(k)

Proof of equality (*): The map

B Xis1, . X)X L X @kXG, XX, X - R X

n n

i —s —Si —ti - Z
I X XX @ XX XX e
rit1—tit1 Tn—tn ui— 81 Wi —8; 1
’_)Xi—&-l 'Xn" "-Xl Xl lf’l‘i+1—ti+1,...,7‘n—tn7ul—81,...,’ui—8iSO

and to zero otherwise, induces an R-linear map
(1) B[ X1, X)X L X @r kX, X X, X)) — RIXT X
which is surjective and maps the k-vector space generating system

(X7 XXX

Sla"'asivti+la"'7tn 20}
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of the vector space on the left side of (1) to the k-basis

—s —8; —tit1 —tn
{Xl 1""'Xi 'Xi-i-l ""'Xn |81,...7Si,ti+17...,tnZO}

of the vector space on the right side of (1), and therefore provides us with the desired isomorphism in our
special case.

We come to the general case: Choose it1,...,Z, € R such that \/(x1,...,2,)R =m (21,...2, is a 8. 0.
p. of R). Define

Ry :=k[[z1,...,2,]] C R

Ry is regular of dimension n and R is a finite-rank free Ryp-module. Define Iy := (21, ..., 2;)Ro. We have
H;(D(H;(R))) = H7(R) ©r D(H7(R))

and
H(R) = HiIO(Ro) ®Rr, R
and
D(H}(R))) = Homp(H}, (Ro) ®r, R, Er(k))

= Homp, (H}, (Ro), Er(k))

2 .
2 Hom g, (HY, (Ro), Homp, (R, Er, (k)))

= Homp, (R, Dg,(H}, (Ro)))
For (2) we use the fact
ER(k) = HOmRO (R, ERO (k))

We get _ _ ' _
Hy (D(H}(R))) = Hj, (Ro) ®r, Homp, (R, D, (Hy, (Ro)))
Y Homp, (R, 1y, (Ro) ©r, Dr, (Hy, (Ro)))
= Hompg, (R, Er,(k))
@ Er(k)

For (3) we use the fact that R is a finite-rank free Ro-module.

7.4.2 Theorem

Let R be a noetherian local complete regular ring of equicharacteristic zero, I C R an ideal of height h > 1,

T1,...,Tp € I an R-regular sequence and assume that
HY(R) = 0 for every I > h .

Then H?(D(H?(R))) is either Er(k) or zero.
Proof:
We set

D := D(H?xl,...,mh)R(R))
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By theorem 1.1.2, we know that x1, ...,z is a D-regular sequence and, therefore, we have

0 h—1
H(z1,...,zh)R(D) == H(ml,...,xh)R<D> =0 .

Because of this, an easy spectral sequence argument (applied to the composed functor I'y o Cia,,....en)r and
to the R-module D) shows that

H?(D) = FI(H?Il,...,rh)R(D)) c H?zl,...,rh)R(D) = ER(k) .

The last equality is theorem 7.4.1. But, from subsection 7.2 and from [Lyl, Example 2.1 (iv)], it is clear
that H?(D) has a D-module structure and so, from [Ly1, Theorem 2.4 (b)], we deduce that H?(D) is either

Er(k) or zero. Furthermore, the natural injection
H?(R) c H?ml,..‘,a:h)R(R>

induces a surjection
D — D(H}(R))

and hence, as H? is right-exact, a surjection
H} (D) — H} (D(H](R))) -

But again, the last module has a D-module structure, and thus, from [Ly1, Theorem 2.4 (b)] and from what

we know already, we conclude the statement.
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8 Attached prime ideals and local homology

8.1 Attached prime ideals — basics

This subsection is a collection of definitions and facts about primary and secondary representation, both in
general situations (i. e. we do not always assume that our modules have any finiteness properties). We
will make use of these facts in subsection 8.2. [BS] is a reference for the notion of attached primes (of local

cohomology modules).

8.1.1 Definition and remark

Let R be aring, M # 0 an R-module and N an R-submodule of M. M is coprimary iff the following condition
holds: For every = € R the endomorphism M % M given by multiplication by z is injective or nilpotent (i.
e. AN € N: 2V . M = 0, note that for finitely generated M this is equivalent to V,,cp,3IN € N : 2V -m = 0).
If M is coprimary \/W(J\/[) is a prime ideal of R. In general we say IV is a primary submodule of M
ifft M/N is coprimary. Now let Uy,...,Us € M be submodules of M. We say the s-tuple (Uy,...,Us) is a
primary decomposition of (the zero ideal of) M iff the following two conditions hold:

HUN...NnU; =0.

(ii) All U; are primary submodules of M.

In this case (Uy,...,Us) is called a minimal primary decomposition of M iff, in addition, the following two
statements hold:

(iii) Every Uy N ... N U;N...NU, is not zero.

(iv) The ideals \/Anng(M/U;) (for i =1,...,s) are pairwise different.

It is clear that if there exists a primary decomposition of M there is also a minimal one.

8.1.2 Definition and remark
Let R be a noetherian ring, M an R-module and assume there exists a minimal primary decomposition
(Ur,...,Us) of M. Then the set

{VAmmr(M/U)|i=1,...,s} =: Assp(M)

does not depend on the choice of a minimal primary decomposition of M (the proof of this goes just like the

well-known proof in case M is finite). We say the prime ideals of Assg(M) are associated to M

8.1.3 Remark

Let R be a noetherian ring and M a noetherian (i. e. finitely generated) R-module. Then it is well-known
that M has a (minimal) primary decomposition. Note that this holds without the hypothesis R is noetherian,
but anyway M being noetherian implies that R/ Anng(M) =: R is noetherian and M is a R-module.

8.1.4 Definition

Let R be a noetherian ring and M an R-module. One defines
Assp(M) := {p C R prime ideal |[3m € M : p = Anng(m)}.

It is easy to see that this definition agrees with the above one whenever M has a primary decomposition.
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8.1.5 Definition and remark

Let R be a ring and M # 0 an R-module. By definition, M is secondary iff for every = € R the endo-
morphism M % M given by multiplication by z is either surjective or nilpotent. Now let M be arbitrary
and Uy,...,Us € M R-submodules. We say the s-tuple (Uy,...,Us) is a secondary decomposition of M iff
the following two conditions hold: Uy + ...+ Us; = M and all U; are secondary. In this case the secondary
decomposition (Ut, ..., Us) is called minimal iff the following two conditions hold: All Uy +...+ U+...+U,
are proper subsets of M and all \/m are pairwise different. Again, existence of a secondary decom-

position implies existence of a minimal one.

8.1.6 Definition and remark
Let R be a noetherian ring and M an R-module; assume there exists a minimal secondary decomposition
(Uy,...,Us) of M. Then the set

AttR(M) = {\/ADDR(UZ‘)“ = 17 .. 8}

does not depend on the choice of a minimal secondary decomposition of M. We say the prime ideals in
Attr(M) are attached to M.

8.1.7 Remark
Let R be a noetherian ring and M an artinian R-module. Then there exists a (minimal) secondary decom-
position of M. The proof is simply a dual version of the proof of 8.1.3 (which is, of course, well-known).

Again this works also if R is not noetherian.

8.1.8 Definition
Let R be a noetherian ring and M an R-module. We define

Attp(M) := {p C R prime ideal |3 an R-submodule U C M : p = Anngr(M/U)}.
Is is not very difficult to see that this definition agrees with the first one if M has a secondary decomposition.

8.1.9 Remark
Let (R, m) be a noetherian local ring, M an R-module and (Uy,...,Us) a minimal primary decomposition
of M. The following implications are clear by duality:
() U1N...NU, = 0= D(M/Uy) +...+...D(M/U,) = D(M)
(ii) M/U; is coprimary = D(M/U;) is secondary (for every 7)
(iii) The primary decomposition (Uy,...,Us) of M is minimal =
the secondary decomposition (D(M/Uy),...,D(M/Us)) of D(M) is minimal.
(iv) Anng(M/U;) = Anng(D(M/U;)) (for every i)
Thus we have
Assp(M) = Attr(D(M))

In a very similar way the following statement holds: Any (minimal) secondary decomposition of M induces

a (minimal) primary decomposition of D(M). In particular, if M has a secondary decomposition:

Attg(M) = Assp(D(M))
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8.1.10 Remark

It is true that if Uy, ..., U are arbitrary submodules of R such that (D(M/Uy),...,D(M/Us)) is a (minimal)
secondary decomposition of D(M) then (Ui, ...,Us) is a (minimal) primary decomposition of M, but note
that we do not know that every submodule of D(M) is of the form D(M/U) for some submodule U of M.
Similarly, if Uy, ..., Us are arbitrary submodules of M such that (D(M/Uy),...,D(M/Uy)) is a (minimal)

primary decomposition of D(M) then (Us,...,Us) is a (minimal) secondary decomposition of M.

8.1.11 Remark
Let (R, m) be a noetherian local ring, p a prime ideal of R and M an R-module. Then

p € Assp(M) <= 3 finitely generated submodule U of M : p = Anng(U),
p € Attg(D(M)) <= 3 submodule U’ of D(M) : p = Anng(D(M)/U").

In particular the existence of a submodule U of M satisfying p = Anng(U) implies p € Attr(D(M)).
Therefore we have
Assp(M) C Attr(D(M)).

This inclusion is strict in general: Take for example M = E = Egr(R/m), an R-injective hull of R/m:
Assg(Er(R/m)) = {m}, but D(E) = R and so Attz(D(E)) = Spec(R). But nevertheless a stronger inclusion
holds (plug in D(M) for M in theorem 8.1.12 to see that it is actually stronger):

8.1.12 Theorem
Let (R, m) be a noetherian local ring and M an R-module. Then

Assp(D(M)) C Att(M)

and the sets of prime ideals maximal in each side respectively coincide:

{p|p maximal in Assr(D(M))} = {p|p maximal in Attr(M)}.

Proof:
Let p € Assgp(D(M)) be arbitrary. There exists a submodule U’ of D(M) such that U’ = R-u' = R/p for

some v’ € U’ C D(M). v induces a monomorphism v’ : M/ ker(u') — E and so we have
p=Anng(U’') = Anng(v') = Anng(v/) = Anng(M/ ker(u'));

this implies p € Attgr(M). Having proved this we only have to show that an arbitrary prime ideal p of R
which is maximal in Attr(M) is associated to D(M): p € Attg(M) implies M/pM # 0 and so we must have
Homp(R/p, D(M)) = D(M/pM) # 0; but by the maximality hypothesis on p implies p € Assp(D(M)).

8.1.13 Theorem

Let (R,m) be a noetherian local ring and M an R-module. Assume (p;);en is a sequence of prime ideals
attached to M; assume furthermore that q := [,y b; is a prime ideal of R. Then q is also attached to M.
Proof:

For every i we choose a quotient M; of M such that Anng(M;) = gq;. Now the canonically induced map

t: M — [[;en M; induces a surjection M — im(¢); we obviously have (1, b; € Anng(im(z)); on the other
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hand, for every i and every s € R\ p; there is a m; € M; coming from an element m; € M that has s-m; # 0.

But this implies that s cannot annihilate im(¢); therefore
Anmp(im() = (] pi = g
i€N

and the statement follows.

8.2 Attached prime ideals — results

This subsection contains results on attached prime ideals (of local cohomology modules). Our technique
bases on subsection 8.1 where some relations between attached primes of a module and associated primes of
the Matlis dual of the same module were established. This method does not only lead to an easy proof of a
known result (theorem 8.2.1, see also remark 8.2.2), but also enables us to find more attached prime ideals
(of a local cohomology module, see theorem 8.2.3 and corollary 8.2.4 for details). Furthermore, the study of
attached prime ideals leads to new evidence for conjecture (*) (this evidence comes, essentially, from theorem
8.1.13 which describes a property of the set of attached prime ideals that is necessary for being closed under

generalization).

There are some results on the set of attached primes of local cohomology modules: In [MS, theorem 2.2] it

was shown that if (R, m) is a noetherian local ring and M is a finitely generated R-module then
Att (S (M) = {p € Assp(M)] dim(R/p) = dim(M)}

holds. In [DY, Theorem A] this was generalized to
Attr(H™ M (M) = {p € Assp(M)|cd(a, R/p) = dim(M)},

where a C R is an ideal and cd(a, R/p) := max{l € N|H,(R/p) # 0}. We are going to show (theorem 8.2.1)
that the results of section 8.1 lead to a natural proof of this result and, furthermore, to new results on the
attached primes of local cohomology modules (8.2.3 — 8.2.6).

Let (R, m) be a noetherian local n-dimensional ring and a C R an ideal. Then H(R) is an artinian R-module
and hence
Assp(D(Hg (R))) = Attr(Hg (R)).

Now assume that we have (HZ(R) # 0 and) p € Attg(HZ (R)); then we get
0 # Hq(R)/p Hq(R) = Hg (R/p),

i. e. p € Assh(R)(:= {q € Spec(R)|dim(R/q) = dim(R)}) and cd(a, R/p) = n.
Now suppose conversely that we have a prime ideal p of R such that cd(a, R/p) = n, equivalently H" (R/p) #
0. By Hartshorne-Lichtenbaum vanishing we get a prime ideal q C R satisfying p = qN R and 4/ aR + q=

mp(:=maximal ideal of ]:2), this in turn implies

0 # Hy5(R/a) = Hy,  (R/a).
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Matlis duality theory shows that q € ASSR(D(HZ’R(R))). It is easy to see that
D(H}(R)) = D(Hg (R)),
holds canonically, the D-functors taken over R resp. over R. Thus we have shown
Attr(Hg (R)) = {p|cd(a, R/p) = n}.
For every finitely generated R-module M we can apply this result to the ring R/ Anng(M) and we get

8.2.1 Theorem
Let (R, m) be a noetherian local ring, a C R ein Ideal and M a finitely generated n-dimensional R-module.
Then

Attr(Hq (M) = {p € Assp(M)|cd(a, R/p) = n}

holds.

8.2.2 Remark
This is [DY, Theorem A], where it was proved by different means.

In subsection 8.1 we established several relations between attached primes of a module and associated primes
of the Matlis dual of the same module; theorem 8.2.3 is a consequence of these relations; we can retrieve
more information from these relations to get new theorems on the attached primes of top local cohomology

modules (remarks 8.2.5):

8.2.3 Theorem
Let (R, m) be a d-dimensional noetherian local ring.
(i) If J is an ideal of R such that dim(R/J) =1 and H%(R) = 0 then

Assh(R) C Attr(HY ' (R))
holds. If, in addition, R is complete, one has
Attr(H% ' (R)) = {p € Spec(R)| dim(R/p) = d — 1,/p + J = m} U Assh(R).
(ii) For any z1,...,x; € R there is an inclusion
{p € Spec(R)|z1,...,x; is a part of a system of parameters of R/p} C AttR(Hfﬁ)m,wi)R(R)).

Proof:
(i) Note that theorems 3.2.6 and 3.2.7 show that one has Assh(R) = Assh(D(H% !(R))) in the given situation

and, if R is complete,
Assp(D(HY(R))) = {p € Spec(R)| dim(R/p) = 1,dim(R/(p + J)) = 0} U Assh(R) .

Now we use theorem 8.1.12 and remark: If R is complete, given an arbitrary p € Att R(H‘i_l(R)) it follows
that H% *(R/p) # 0 and hence, by Hartshorne Lichtenbaum vanishing, that dim(R/p) > d — 1 and, if
dim(R/p) = d — 1, that p + J is m-primary.
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(ii) Follows from theorems 8.1.12 and 3.1.3 (ii).

8.2.4 Corollary

Let (R, m) be a noetherian local ring. For every x € R one has
Attr(Hzr(R)) = Spec(R) \ U(x).

Proof:
"C” Let p € Attg(HLR(R)). Then

0# Hyp(R)/pHyp(R) = Hyp(R/p) = x &p
7 D” follows e. g. from 3.1.3 (ii).

8.2.5 Remarks

(i) It was shown in remark 1.2.1 that, for any x,...,2; € R, there is an inclusion

ASSR(D(Hézl,m,mi)R(R)» - {p € SpeC(R)| Hle,,zl)R(R/p) 7é O}
By what we have proved so far it is clear that there is a chain of inclusions

Assp(D(Hi,, o r(R)) C Attr(Hl,, . x(R) € {p € Spec(R)|Hi,,

..........

(ii) Conjecture (*) says that, for any sequence 1, ...,x; in R, the inclusion

Assp(D(H{, .., r(R))) € {p € Spec(R)|H{,, . o,)r(R/p) # 0}

.....

is an equality; if this could be shown to be true, we could conclude that

ASSR(D(H’ézl ..... x,)R)) = AttR(HEzl,,x,)R(R)) .

(iii) In the situation of theorem 8.2.3 (i) the attached primes of the top local cohomology module coincide

with the associated primes of the Matlis dual of the top local cohomology module.

8.2.6 Remarks
We now assume that k is a field and R = k[[X1,...,X,]] is a power series algebra over k in n variables
X1,...,Xpn;let i € {1,...,n}. Theorems 4.2.1, 4.3.4 and 8.1.12 imply the following statements:

(i) In the case ¢ = n we have
Attr(Hx,, . x,)r(R)) ={0} .

(i) Ifi=n— 1,
AttR(H?;;ll,“”anl)(R) = {0} U {pR|p € R prime element, p & (X1,...,X,_1)R}

holds.

(iii) Finally we concentrate on the case i = n — 2, where we have the following statements:
(0) {0} € Attr(HE x, )r(P);
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(B) If p is a height-two prime ideal of R such that \/(X1,..., X,—2)R +p =m then

pe AttR(H?);i,,.,anz)R(R))

holds.
() Conversely, p € AttR(H?);i___7Xn72)R(R)) implies that height(p) < 2;
(6) If p € R is a prime element such that p &€ (X1,...,X,,—2)R then

pR € AttR(H?);i,.,X7172)R(R))

holds.
(e) If p € R is a minimal generator of (X71,...,X,_2)R then

PR & Attr(H{x? _ x, o r(R)

holds.

(¢) Because of theorems 4.3.4 and 8.1.12, for every prime element p € (X1,..., X,—2)RN(X,—1, Xn)R there
exist infinitely many (pairwise different) prime ideals (p;);en of height two attached to H?)zl?m o) r(R)
and containing p. As any q € (), b1 must satisfy height(p, ¢) R < 2 it is clear that we have pR = (), b1
_____ XW’_2)R(R)). But in view of theorems 1.2.3 and 8.1.12 it is
clear that pR € Att R(H?);f“ (R) is a necessary condition for conjecture (*). This gives new evidence

for conjecture (*).

')X7L72)R

8.3 Local homology and a necessary condition for Cohen-Macaulayness

Let (R, m) be a noetherian, local ring, M an R-module and I an ideal of R. It is well-known that H(}im(M) (M)

is artinian for any proper ideal I of R provided M is finitely generated as R-module (cp. [Me]).
There is a theory of local homology modules (cp. [T1] and [T2]): If X is an artinian R-module and
x = x1,...,%, is a sequence of elements in m, the i-th local homology module H%(X) of X with respect to
x is defined by

@HZ(K.(QT?) s axn X)) ’

T
neN

where Ko(z7,...,27; X) is the Koszul complex of X with respect to «7,..., 2z and H; means taking the
homology of this complex at the i-th position; then H( ) is an R-linear, covariant functor from the category
of artinian R-modules to the category of R-modules.

We repeat the notions of Noetherian dimension N.dim(X') and width of X, width(X): For X = 0 one puts

N.dim(X) = —1, for X # 0 N.dim(X) denotes the least integer r such that 0 :x (z1,...,z,)R has finite

length for some x1,...,x, € m. Now let x1,...,x, € m. z1,...,T, is an X-coregular sequence if
0:x (z1,...,2-1)R 5 0:x (21,...,2i-1)R
is surjective for ¢ = 1,...,n. width(X) is defined as the length of a (in fact any) maximal X-coregular

sequence in m. Details on N.dim(X) and width(X) can be found in [Oo] and [Ro], here we cite one general
fact: For any artinian R-module X
width(X) < N.dim(X) < 0o
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holds and X is co-Cohen-Macaulay if and only if width(X) = N.dim(X) holds (by definition). Tang has
shown ([T1, Proposition 2.6]) that Hgfm(M)(M ) is co-Cohen-Macaulay (of Noetherian dimension dim(M)) if

M is a finitely generated Cohen-Macaulay R-module and ([T1, Theorem 3.1]) that

iy (™0 (1) = M1

holds (here x1,...,24 is a's. 0. p. of M and we still assume that M is Cohen-Macaulay). Tang asks ([T1,
Remark 3.5]) if one can show that H3(X) is finitely generated if X is an artinian R-module of N.dimension
dand £ = x1,...,x4 is such that 0 :x z has finite length.

In the example 8.3.1 below we give a negative answer to this question. However, under the additional
assumption that R is complete, we show that H5(X) is a finitely generated R-module (theorem 8.3.3) and
draw some consequences establishing various duality results (theorem 8.3.5). As an application we present
a necessary condition for a given finite R-module M to be Cohen-Macaulay (corollary 8.3.6).

z will always stand for a sequence z1,...,zq in m. The results of this and the next subsection can also be
found in [H5].

8.3.1 Example

Let k be a field, T' a variable and R the noetherian, local ring k[T](r). Set X := T~ k[T '] := {a_1 T~ +
oot a_,T7"n e N a_y,...,a_, € k}. X has a R = k[[T]]-structure (such that T . T—" = T™ " if
m—n<—1land =0if m—n >0, where m > 0,n > —1) and thus it also has an R-module-structure. Every
non-trivial R-submodule of X has the form < T~™ >x for some n > 1 and therefore X is an artinian R-
module. Furthermore (0 :x T) = k-T~1 is of finite length (and so N.dim(X) = 1) and HY (X) is the indirect
limit over all (0 :x 7"), where the transition maps (0 :x 7'*') — (0 :x T") are induced by multiplication by
T. An elementary calculation shows HY (X) = k[[T]] = R which is not finite as an R-module.

But more can be said:

8.3.2 Remark
Let (R, m) be a local noetherian regular d-dimensional ring, X an artinian co-Cohen-Macaulay R-module,
N.dim(X) =d, x = x1,...,24 € m such that (0 :x ) is of finite length. Then

H;(X) is a finite R-module <= R is complete

holds.
Proof:
<« follows from theorem 8.3.3 below. =>: From [T1, Remark 3.5] it follows that depth(H3(X)) = d both as
an R— and as an R-module; but now the Auslander-Buchsbaum formula implies that H3(X) is a finite free

R-module and so we must have R = R.

From now on we assume that R is complete and show at first that the top local homology module is always

finite; this is done, essentially, by Matlis duality.

8.3.3 Theorem
Let (R, m) be a noetherian, local, complete ring, X an artinian R-module of N.dimension d; let 1, ...,z4 € m
be such that 0 :x (z1,...,24)R has finite length. Then H5(X) is a finitely generated R-module.
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Proof:

Z1,...,2q form a system of parameters for D(X), because
D(X)/(x1,...,24)D(X) = D(0:x (21,...,24)R)
has finite length and dim(D(X)) = N.dim(X) = d. Using Matlis-duality we have

H3(X) = Hz(D(D(X)))
=lim Hy(K,(z7, ...,z D(D(X))))

neN

= lm D(HY(K* (2}, ...,a%3; D(X))

neN

= D(lim H(K* (27, ..., 2}; D(X))))

neN
= D(H?wl,,wd)R(D(X))) )

and the last module is finitely generated because H‘éﬁ1

vyr(D(X)) is artinian.

8.3.4 Corollary

Let (R, m) be a noetherian, local, complete ring and X a co-Cohen-Macaulay R-module of N.dimension d;
let x1,...,24 € m be such that 0 :x (x1,...,24)R has finite length. Then H;""**(X) is a Cohen-Macaulay
module. In particular if d = dim(R), H;"""**(X) is a maximal Cohen-Macaulay module.

Proof:

The statements follow from theorem 8.3.3 and [T1, Remark 3.5].

Let (R,m) be a noetherian, local, complete ring. Let N (resp. \A) denote the set of isomorphism classes of

noetherian (resp. of artinian) R-modules. We have maps F; and Fy from N to A induced by

M £ Matlis dual of M

and
M & gdmOh )
For F5 it does not make any difference if we take H?;T(M;d (M))R(M) instead of ngm(M)(M) (for any system
of parameters x1, ..., Zaim(ar) of M). Similarly we have maps G and G from A to N induced by
X & Matlis-dual of X
and

G2 . T1,-.,IN.dim(X)
X = Hy dim(x) (X)

(here 1, ..., 2N qim(x) are such that 0 :x (z1,...,ZN.qim(x)) R has finite length). By Matlis-duality we have
FloGy =idy, Gy o Fy = idy
From the proof of theorem 8.3.3 one understands that
FioGy=F,0G, =T
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and hence
G10F2:G20F1 = Tl 5

GQZGloFQOGl:GloT,FQZFloGQOFleloT/ .

8.3.5 Theorem

Let (R, m) be a noetherian, local, complete ring. Let M be a noetherian and X an artinian R-module. Then
(i) If M is Cohen-Macaulay, then F»(M) is co-Cohen-Macaulay.

(i) If M is Cohen-Macaulay, then F; (M) is co-Cohen-Macaulay.

(iii) If X is co-Cohen-Macaulay, then G3(M) is Cohen-Macaulay.

(iv) If X is co-Cohen-Macaulay, then G;(M) is Cohen-Macaulay.

Proof:

(ii) and (iv) are easily proved using Matlis-duality theory. (i) is proved by [T1, Proposition 2.6]) and now
(iii) follows from Go = G o F5 0 Gy.

Let Ny (resp. Ag) denote the set of isomorphism classes of noetherian Cohen-Macaulay modules (resp. of
artinian co-Cohen-Macaulay modules). Then, by theorem 8.3.5, F, F», G1, G5 induce maps between Ny and
Ap in an obvious way. [T1, theorems 3.1 and 3.4] imply F» o Gy = id 4, and Gy o F5 = idy,. We deduce
G1=GooFi oGy, Fi = F,0G) 0 Fy,T? =id, T = id on Ny and Aj.

As an application we get a necessary condition for a finite module to be Cohen-Macaulay:

8.3.6 Corollary

(i) Let wgr be a dualizing module for R (it exists uniquely up to isomorphism since R is complete). Assume
that M is Cohen-Macaulay. Then Ext%m(R)fdim(M)(M ,wr) is Cohen-Macaulay.

(ii) In particular if there exists an ideal I of R such that I C Anng(M), dim(R/I) = dim(M) and R/I is
Gorenstein, Cohen-Macaulayness of M implies Cohen-Macaulayness of Homz(M, R) (here R := R/I). Such
an ideal I exists, for example, if R itself is Gorenstein.

Proof:

The statements follow from local duality and theorem 8.3.5.

8.4 Local homology and Cohen-Macaulayfications

In the text following theorem 8.3.5 we have seen G2 o Fy = idp, and Fp o G2 = id4,. Now we turn our

interest to the question: What can be said about G o Fy in general, that is, on N7

8.4.1 Definition

Let (R, m) be a noetherian, local, complete ring and M a noetherian (i. e. finitely generated) R-module. Let
M be a finitely generated R-module containing M as a submodule. We say M is a Cohen-Macaulayfication
of M if the following three conditions hold:

(i) M is Cohen-Macaulay.

(ii) dim(M) = dim(M).

(iii) dim(M /M) < dim M — 2 (this condition is equivalent to Hgfm(M)_l(M/M) = Sfm(M)(M/M) =0).

In the sequel we won’t always strictly distinguish between a module M and its isomorphism class, for reasons

of simplicity.
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8.4.2 Theorem

Let (R,m) be a noetherian, local, complete ring and M a noetherian R-module. If M has a Cohen-
Macaulayfication, it has (up to an M-isomorphism) only one Cohen-Macaulayfication, namely (Ggo Fy)(M).
Proof:

Let M be a Cohen-Macaulayfication of M. We consider the short exact sequence 0 — M — M — M /M —0
and its long exact cohomology sequence induced by applying I'y, to it: Because of condition (iii) of definition
8.4.1 we get a canonical isomorphism

im im . 8.4.1 (il im (M ~
™00 (1) = 1m0 () ML O gl i

and therefore M = (Gyo FQ)(M) = (G0 F2)(M).

8.4.3 Remark

Goto (cp. [Go]) has shown: If (A, m) is a noetherian, local, d-dimensional ring with total quotient ring Q(A),
the following conditions are equivalent:

(i) There is a Cohen-Macaulay ring B between A and Q(A) such that B is finitely generated as an A-module,
dim(B,) = d for every maximal ideal n of B and m- B C A.

(ii) A is a Buchsbaum ring (see [SV] for details on Buchsbaum rings) and Hf, (A) = 0 for i # 1,d.

In this case, if d > 2, B is uniquely determined and Goto ([Go]) calls it the Cohen-Macaulayfication of A.

8.4.4 Remark

Cohen-Macaulayfication in our sense is a generalization of Goto’s concept of Cohen-Macaulayfication:

8.4.5 Theorem

Let (R, m) be a noetherian, local, complete ring, and assume that the Cohen-Macaulayfication B of R (in
the sense of Goto) exists. Then B is also a Cohen-Macaulayfication in our sense.

Proof:

Because of m - B C R we have m - (B/R) = 0, which implies that B/R is a finite-dimensional R/m-vector
space. Because of d = dim(R) > 2 we must have HS ' (B/R) = H% (B/R) = 0.

8.4.6 Remark
In particular if (R, m) is a noetherian, local, complete Buchsbaum-ring of dimension d > 2 such that H,(R) =
0 for i # 1,d, the R-module R has a Cohen-Macaulayfication.

8.4.7 Example

An easy example is given by R = k[[z1,x2, z3,24]]/(21,22) N (x3,24). In the sense of Goto as well as in
our sense R has a Cohen-Macaulayfication given by (k[[x1,...,z4]]/(21,22)) ® (k[[z1,- .., x4]]/ (x5, 24)); this
can be seen either directly or by remarking that R is a 2-dimensional Buchsbaum ring with Hi (R) = 0 for
i £1,2.

75



References

[Ba]
[BHe]

[Go]

[Gr]
[Hal]
[Ha2]

[H1]

Bass, H. On the ubiquity of Gorenstein rings, Math. Z. 82, (1963) 8-28.

Brodmann, M. and Hellus, M. Cohomological patterns of coherent sheaves over projective schemes,
Journal of Pure and Applied Algebra 172, (2002) 165-182.

Bruns, W. and Herzog, J. Cohen-Macaulay Rings, Cambridge University Press, (1993).
Bjork, J.-E. Rings of Differential Operators, Amsterdam North-Holland, (1979)

Brodmann, M. P. and Sharp, R. J. Local Cohomology, Cambridge studies in advanced mathematics
60, (1998).

Cowsik, R. and Nori, M. Affine curves in characteristic p are set-theoretic complete intersections,
Invent. Math. 45, (1978) 111-114.

Dibaei, M. T. and Yassemi, S. Attached primes of the top local cohomology modules with respect to
an ideal, Arch. Math. 84, (2005) 292-297.

Eisenbud, D. Commutative Algebra with A View Toward Algebraic Geometry, Springer Verlag,
(1995).

Goto, S. On the Cohen-Macaulayfication of certain Buchsbaum rings, Nagoya Math. J. Vol. 80,
(1980) 107-116.

Grothendieck, A. Local Cohomology, Lecture Notes in Mathematics, Springer Verlag, (1967).
Hartshorne, R. Affine Duality and Cofiniteness, Invent. Math. 9, (1970) 145-164.
Hartshorne, R. Complete intersections in characteristic p > 0, Amer. J. Math. 101, (1979) 380-383.

Hellus, M. On the set of associated primes of a local cohomology module, J. Algebra 237, (2001)
406-419.

Hellus, M. On the associated primes of Matlis duals of top local cohomology modules, Communica-
tions in Algebra 33, (2001), no. 11, 3997-4009.

Hellus, M. Matlis duals of top local cohomology modules and the arithmetic rank of an ideal, to

appear in Communications in Algebra.

Hellus, M. Attached primes and Matlis duals of local cohomology modules, submitted to Archiv der
Mathematik

Hellus, M. Local Homology, Cohen-Macaulayness and Cohen-Macaulayfications, to appear in Algebra

Colloquium.
Hellus, M. Lokale Kohomologie, Dissertation, Regensburg (1999).

Hellus, M. and Stiickrad, J. Matlis duals of top Local Cohomology Modules, submitted to Proceedings

of the American Mathematical Society.

Hellus, M. and Stiickrad, J. Generalization of an example of Hartshorne concerning local cohomology,

preprint.

Huneke, C. Problems on Local Cohomology, Res. Notes Math. 2, (1992) 93-108.

76



Huneke, C. and Lyubeznik, G. On the vanishing of local cohomology modules, Invent. Math. 102,
(1990) 73-93.

Lyubeznik, G. Finiteness properties of local cohomology modules (an application of D-modules to
Commutative Algebra), Invent. Math. 113, (1993), 41-55.

Lyubeznik, G. A survey of problems and results on the number of defining equations, Commutative
Algebra, Math. Sci. Res. Inst. Publ. 15, Springer, (1989), 375-390.

Matsumura, H. Commutative ring theory, Cambridge University Press, (1986).

MacDonald I. G. Secondary representation of modules over a commutative ring, Symp. Math. XI,
(1973) 23-43.

Melkersson, L. Some applications of a criterion for artinianness of a module, J. Pure and Appl. Alg.
101, (1995) 293-303.

Matlis, E. Injective modules over Noetherian rings, Pacific J. Math. 8, (1958) 511-528.

MacDonald I. G. and Sharp, R. Y. An elementary proof of the non-vanishing of certain local coho-
mology modules, Quart. J. Math. Ozford 23, (1972) 197-204.

Marley, M. and Vassilev, J.C. Local cohomology modules with infinite dimensional socles, Proc.
Amer. Math. Soc. Vol. 132, No 12, (2004) 3485-3490

Ogus, A., Local Cohomological Dimension of Algebraic Varieties, Ann. Math. Vol. 98, (1973)
327-365

Ooishi, A. Matlis duality and width of a module, Hiroshima Math. J. 6, (1976) 573-587.

Roberts R. N. Krull dimension for Artinian modules over quasi local commutative rings, Quart. J.
Math. (Ozford)(3) 26, (1975) 269-273.

Scheja, G. and Storch, U. Regular Sequences and Resultants, AK Peters, (2001).

Stiickrad, J. and Vogel, W. Buchsbaum Rings and Applications. VEB Deutscher Verlag der Wis-

senschaften, Berlin, Germany.
Tang Z. M. Local Homology and Local Cohomology, Algebra Colloguium 11:4, (2004) 467-476.

Tang Z. M. Local homology theory for Artinian modules, Comm. Alg. 22, (1994) 2173-2204.

7



Deutsche Zusammenfassung
Lokale Kohomologie und Matlis-Dualitat

Eine algebraische Menge X heifit (mengentheoretisch) vollstandiger Durchschnitt, wenn sie von codim(X)
vielen algebraischen Gleichungen ”ausgeschnitten” werden kann (etwa in einem affinen oder projektiven
Raum). Es ist bekannt, dass, im Falle positiver Charakteristik, jede Kurve im n—dimensionalen affinen
Raum mengentheoretisch vollstandiger Durchschnitt ist ([CN]). Auf der anderen Seite sind im Zusammen-
hang mit mengentheoretisch vollstandigen Durchschnitten bemerkenswert viele Fragen unbeantwortet. Als
Beispiele seien angefiihrt: Ist jeder abgeschlossene Punkt in Pé (zweidimensionaler projektiver Raum iiber
den rationalen Zahlen) mengentheoretisch vollsténdiger Durchschnitt? Ist jede Kurve in A, (dreidimension-
aler affiner Raum tiber den komplexen Zahlen) mengentheoretisch vollstandiger Durchschnitt? Zu diesen und

vielen weiteren verwandten Fragen enthilt [Ly2] eine Ubersicht.

Ein weiteres Beispiel ist die Kurve Cy C P% die durch

parametrisiert ist. Es ist, zumindest im Falle der Charakteristik Null, unbekannt, ob C;y mengentheoretisch
vollstandiger Durchschnitt ist; eine offensichtliche Obstruktion ware H§C4 (k[Xo, X1, X2, X3]) # 0 (wobei I¢,
das Verschwindungsideal von Cy bezeichnet). Es ist aber bekannt, dass

H?C4(k[X0»X17X2»X3]) =0

ist. Es ist sogar so, dass das (Nicht-)Verschwinden von lokalen Kohomologien im Allgemeinen nicht die
Minimalzahl algebraischer Gleichungen, die die gegebene algebraische Menge ”ausschneiden”, bestimmt.

Algebraisch ausgedriickt, bedeutet dies, dass (fiir ein Ideal I) die Ungleichung
cd(I) < ara(I)
gelten kann (hier bezeichnen cd(I) die (lokale) kohomologische Dimension von I und

ara(I) ;== min{l € N|3ry,...,m € R: VI =+/(r1,...,7)R}

die Minimalzahl algebraischer Gleichungen, die die zu I gehorende algebraische Menge ”ausschneiden”).
Ubrigens enthélt 5.1 ein konkretes Beispiel fiir das Vorliegen dieser Ungleichung. Auf der anderen Seite
enthalten die Matlis-Duale gewisser lokaler Kohomologiemoduln Informationen dariiber, ob ein mengenthe-

oretisch vollstdndiger Durchschnitt vorliegt oder nicht — dies ist der Inhalt von

1.1.4 Korollar

Seien (R,m) ein noetherscher lokaler Ring, I C R ein echtes Ideal, h € N und f = fi,...,fn € I eine
R-reguldre Folge. Dann sind dquivalent:

(i) /fR= VT (d. h. I ist mengentheoretisch vollstindiger Durchschnitt).

(ii) H} (R) = 0 fiir jedes [ > h und f ist eine D(H}(R))-quasi-regulire Folge.

(ii) H} (R) = 0 fiir jedes [ > h und f ist eine D(H}(R))-regulire Folge.
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Dieses Ergebnis legt es nahe, Matlis-Duale von lokalen Kohomologiemoduln zu studieren, insbesondere ihre
assoziierten Primideale; dies sind auch die Hauptziele dieser Arbeit. Die erhaltenen Ergebnisse und verwen-
deten Methoden fiihren auch zu verschiedenen Anwendungen, die in Kapitel 6 versammelt sind. Dariiber
hinaus ergeben sich Zusammenhénge zur (lokalen) Kohomologie formaler Schemata (7.1), zu sogenannten
”attached” Primidealen von lokalen Kohomologiemoduln (8.1, 8.2) und zum Begriffe der lokalen Homologie
(8.3, 8.4).

Folgende Bezeichnungen seien vereinbart: Sind R ein Ring, I C R ein Ideal und M ein R-Modul, so bezeichnet
H} (M) die I-te lokale Kohomologie von M mit Triiger in I; ist (R, m) ein lokaler Ring, so ist Er(R/m) eine
(fixierte) R-injektive Hiille des R-Moduls R/m. SchlieBlich bezeichnet (iber dem lokalen Ring (R, m)) D den
Matlis-Dualisierungsfunktor, d. h. D(M) := Homg (M, Er(R/m)) fiir jeden R-Modul M. Zur Vermeidung

von Missverstandnissen werden wir gegebenenfalls Dy statt D schreiben.
Es folgt eine chronologische Ubersicht des Inhalts der einzelnen Kapitel:

Ziel von Abschnitt 1.1 ist der Beweis des eingangs zitierten Korollars 1.1.4; dies geschieht, indem zuné&chst
die folgenden Satze 1.1.2 und 1.1.3 bewiesen werden, aus denen dann, im Wesentlichen durch Spezialisierung,
Korollar 1.1.4 folgt:

1.1.2 Satz
Seien (R, m) ein noetherscher lokaler Ring, I C R ein Ideal, h > 1 und f = fi,..., fp € I eine Folge mit
VIR = VT und so, dass

H R/ (frso f)R) =0 (1=0,...,h = 3)

gilt (fiir b < 2 ist diese Bedingung leer). Dann ist f eine D(H}(R))-quasi-regulire Folge.

1.1.3 Satz
Seien (R, m) ein noetherscher lokaler Ring, I C R ein Ideal, h > 1 und f = f1,..., fr € I so, dass

HY(R)=0 (I>h)
und
Hy R/ (fry - ) R) =0 (1=0,...,h = 2)
gelten (fiir & < 1 ist diese Bedingung leer) und so, dass f eine D(H?(R))-quasi-reguléire Folge ist. Dann gilt

\/T: V(fl?"'7fh)R'

Korollar 1.1.4 (siehe oben) legt es nahe, zu untersuchen, fiir welche f € R die Multiplikation mit = auf einem
Matlis-Dual eines lokalen Kohomologiemoduls injektiv ist, mit anderen Worten, die Menge der Nullteiler
auf einem solchen Modul zu bestimmen. Eine genauere Frage ist die nach der Menge der zu diesem Modul

assoziierten Primideale. In diesem Zusammenhang verweisen wir auf

1.2.2 Vermutung
Sind (R, m) ein noetherscher lokaler Ring, h > 0 und 1, ..., z;, Elemente von R, so gilt

.....

Diese Vermutung bezeichnen wir mit (*). Die Inklusion C ist stets richtig, dies ist (unter anderem) der

Inhalt von
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1.2.1 Bemerkung
Sind (R, m) ein noetherscher lokaler Ring, h > 0 und 1, ..., z;, Elemente von R, so gilt

.....

Es gibt zu (*) dquivalente Aussagen:

1.2.3 Satz
Die folgenden Aussagen sind dquivalent:
(i) Vermutung (*) ist richtig, d. h. fiir jeden noetherschen lokalen Ring (R, m), jedes h > 0 und jede Folge
T1,...,Tp € R gilt
Assp(D(Hy, 2y r () = {p € Spec(R)|H{,, 5, r(B/p) #0} .

.....

(ii) Fir jeden noetherschen lokalen Ring (R, m), jedes h > 0 und jede Folge z1,...,x) € R ist die Menge
Y = Assp(D(H{,, .0, (R)))

abgeschlossen unter Generalisierung, d. h. aus pg,p1 € Spec(R),po C p1,p1 € Y folgt pp € Y.
(iii) Fiir jeden noetherschen lokalen Integritéatsring (R, m), jedes h > 0 und jede Folge x1,...,2, € R gilt
die Implikation

.....

(iv) Fiir jeden noetherschen lokalen Ring (R, m), jeden endlich erzeugten R-Modul M, jedes h > 0 und jede
Folge z1,...,x, € R gilt die Gleichheit

ASSR(D(H?QJI,‘.,,mh)R(M))) = {p € SuppR(M>| H?:rl,,zh)R(M/pM) 7é 0} :

Aussage (iv) ist also formal allgemeiner als Aussage (i), aber inhaltlich dquivalent dazu.

[HS1, Kapitel 0] enthélt eine weitere Vermutung zur Struktur der Menge der assoziierten Primideale von
D(H?Ih___@h)R(R)): Alle Primideale p, die maximal in ASSR(D(H&“7___7mh)R(R))) sind, haben die Dimension h:
dim(R/p) = h; diese Vermutung ist falsch, Bemerkung 1.2.4 enthélt ein Gegenbeispiel (mit dim(R) —h = 2).
Indem wir uns mit (quasi-)reguliiren Folgen auf Moduln der Form D(H”(R)) beschéftigen, stellt sich folgende
Frage: Im allgemeinen ist D(H?(R)) nicht endlich erzeugt (viele Ergebnisse dieser Arbeit zeigen, dass dieser
Modul im Allgemeinen unendlich viele assoziierte Primideale hat), der Begriff der reguléren Folge auf nicht-
endlichen Moduln lisst manche Eigenschaften vermissen: Beispielsweise gilt (iiber einem lokalen noetherschen
Ring (R, m)) fiir einen endlichen R-Modul M und eine M-reguldre Folge r1,...,7, € R, dass auch die
Folge r,...,r, € R M-regular ist, falls nur (ry,...,7,)R = (r,...,r},)R vorausgesetzt ist; fiir nicht-
endliche Moduln stimmt diese Aussage im Allgemeinen nicht. Die eingangs erwéhnte Frage lautet: Stimmt
die Aussage fiir Moduln der Form D(H?xh._,“) r(R))? Die Antwort ist (unter gewissen Voraussetzungen)
positiv:

80



1.3.1 Satz

Seien (R, m) ein noetherscher lokaler Ring, h > 1 und I C R ein Ideal mit H*(R) # 0 <= [ = h.

Weiter seien 1 < b/ < h und rq,...,7 € I eine R-regulire Folge, die auch D(H?(R))-reguliir ist. Es seien
.o € ITmit (re,...,me )R = (rh,...,7r},)R. Dann ist auch 7, ... 7}, eine D(H?(R))-regulire Folge.

In Abschnitt 1.4 ist Ry ein lokaler Unterring von R und wir untersuchen Beziehungen zwischen

Dr(H},, . ,r(R)

und

Dr,(Hiy, . _yr(R))

Ein Ergebnis ist

1.4.3 Bemerkung (ii), zweite Aussage

Seien (R, m) ein noetherscher lokaler dquicharakteristischer kompletter Ring mit Koeffizientenkorper & und
Y =¥1,...,¥ € R eine Folge in R so, dass Ry := k[[y1,...,]] (€ R) reguldr und i-dimensional ist (dies ist
z. B. der Fall, wenn szl’_“’yi)R(R) # 0 ist). Wenn Vermutung (*) richtig ist, gilt

Assp(Dr,(H}, . ,yr(R)) = Assp(Dr(H{,, ., r(R) -

In Kapitel 2 werden Eigenschaften der Menge

Assp(D(H{z, 2 r(R)))

untersucht ((R, m) ein noetherscher lokaler Ring, z = x4, ..., x; eine Folge in R). Die verwendeten Methoden

sind konstruktiv in dem Sinne, dass zunéchst in dem R-Modul

E=kX{' . XY

n

(k ein Korper) gewisse Elemente konstruiert werden (Lemmata 2.1 — 2.3); bekanntlich ist E eine R-injektive
Hiille von k, falls R = k[[X1,...,X,]] eine formale Potenzreihenalgebra iiber k ist. Ein zentrales Ergebnis

in diesem Kapitel (und eine Folgerung aus Lemma 2.1) ist

2.4 Satz
Seien (R, m) ein noetherscher lokaler 4quicharakteristischer Ring, ¢ > 1 und 1, ..., z; eine Folge in R. Dann
ist
{p € Spec(R)|x1,...,x; ist Teil eines Paramtersystem von R/p} C ASSR(D(HEM,..A,Ii)R(R))) .
Satz 2.5 enthélt ein dhnliches Ergebnis im gemischt-charakteristischen Fall.

Satz 2.4 ermoglicht es, im Falle i = 1 die Menge der assoziierten Primideale vollsténdig zu berechnen:

2.6 Korollar

Seien (R, m) ein noetherscher lokaler dquicharakteristischer Ring und z € R. Dann ist

Assr(D(HLR(R))) = Spec(R) \ (Vz) .
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Insbesondere ist die Menge der assoziierten Primideale des Matlis-Duals einen lokalen Kohomologiemoduls

im Allgemeinen nicht endlich.

Andererseits zeigen wir in Bemerkung 2.7 (ii), dass die in Satz 2.4 bewiesene Inklusion im Allgemeinen echt

ist, dass also nicht alle assoziierten Primideale von D( z w1,z r(F)) von der in Satz 2.4 angegebenen Form

sind. Schlielich untersuchen wir (in Bemerkung 2.7 (iii)) die Teilmengen

Zy = {p € Spec(R)| H2m17,,,,xi)R(R/P) # 0}

und

Zy :={p € Spec(R)|z1,...,x; ist Teil eines Parametersystems von R/p}
von Spec(R) im Hinblick auf ihre Abgeschlossenheit unter Generalisierung (man beachte, dass geméfl Satz
2.4 (bzw. 2.5) und Bemerkung 1.1.2)

Zy C ASSR(D(Hle,,zz)R(R))) CZ

gilt). Dabei zeigt sich, dass Z; abgeschlossen unter Generalisierung ist, Zo hingegen im Allgemeinen nicht,

selbst dann nicht, wenn R reguldr ist. Immerhin gilt die schwéichere Aussage
ZQ#@:{O}GZQ .

In Kapitel 3 wird die Untersuchung von Ass R(D(Héxl,... +o)r(R))) fortgesetzt, wobei nun keine Voraussetzun-
gen iiber die (Gleich-)Charakteristik gemacht werden. Dabei ist nachfolgendes Lemma ein entscheidender

Ausgangspunkt:

3.1.1 Lemma
Seien R ein Ring, z,y € R und U ein R-Untermodul von R, mit im(¢,) C U (v : R — R, bezeichnet die

kanonische Abbildung). Weiter bezeichne S := im(¢,) C R,. Dann existiert ein Epimorphismus
Ry /U — Ray/(Sz +Uy)

von R-Moduln.

Daraus folgt unter Verwendung von Cech-Kohomologie leicht

3.1.2 Satz
Seien R ein noetherscher Ring, z1,...,%Zm,Y1,...,yn € R (M € Nt ne N) und M ein R-Modul. Dann
existiert ein Epimorphism

H e r(R) = L r(f)

(Z150 T Y1,

von R-Moduln.

Die Idee ist nun, diesen Epimorphismus zu dualisieren; man erhéalt einen Monomorphismus und folglich eine

Inklusionsbeziehung zwischen den jeweiligen Mengen von assoziierten Primidealen. Wir erhalten:
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3.1.3 Satz

Seien (R, m) ein noetherscher lokaler Ring, m € Nt z1,...,2, € Rund M ein endlich erzeugter R-Modul.
Dann gelten:
(i) Fiir jedes p € Assp(D(H{,, . p(M))) ist dim(M/pM) > m.

(i) {p € Suppr(M)|z1, ..., on ist Teil eines Parametersystem von R/p} C Assg(D(H{;, . r(M))).

(iii) Fiir jedes z € R gilt Assgr(D(HLR(R))) = Spec(R) \ V(z).

(iv) Ist 1,..., @, Teil cines Parametersystems von M, so gilt Assh(M) C Assp(D(H{;, . p(M))); im
Falle m = dim(M) gilt sogar Gleichheit: Assh(M) = Assp(D(H{;, . z(M))) (dabeiist Assh(M) definiert
als die Menge der héchstdimensionalen zu M assoziierten Primideale).

(v) Falls R komplett ist, gilt fiir jeded p € Suppp(M) mit dim(R/p) = m die Aquivalenz

p € Assp(D(H{;, . 0. r(M))) < z1,...,Tm ist ein Parametersystem von R/p .

yeeey

Im Abschnitt 3.2 wird die Menge
Assr(D(HF™TH(R)))

untersucht; dabei ist I (zunéchst) ein beliebiges Ideal von R, wir setzen also nicht voraus, dass I (bis auf
Radikal) von dim(R) — 1 Elementen erzeugt wird. Die wichtigsten Ergebnisse sind die beiden folgenden

Satze:

3.2.6 Satz
Seien (R, m) ein noetherscher lokaler d-dimensionaler Ring und J C R ein Ideal mit dim(R/J) = 1 und
H%(R) = 0. Dann gilt

Assh(D(H%'(R))) = Assh(R) .

3.2.7 Satz
Seien (R, m) ein noetherscher lokaler kompletter d-dimensionaler Ring und J C R ein Ideal mit dim(R/J) =1
und H4(R) = 0. Dann gilt

Assp(D(HY(R)) = {P € Spec(R)| dim(R/P) = d — 1,dim(R/(P + J)) = 0} U Assh(R) .
Die Beweise sind etwas technisch und beruhen, unter anderem, auf

3.2.1 Lemma
Seien (S, m) ein noetherscher lokaler kompletter Gorenstein-Ring der Dimension n + 1 und P C S ein

Primideal der Hohe n. Dann gilt kanonisch
D(HY(S)) = 5p/5

In Kapitel 4 untersuchen wir einen Spezialfall, den wie als “reguldren Fall’bezeichnen: k ein Korper, R =
k[[X1,...,X,]] eine Potenzreihenalgebra iiber k in n Variablen und I das Ideal (Xi,...,Xp)R von R (1 <

h < mn). Zum Beweis von Vermutung (*) kann man sich auf den regulédren Fall zuriickziehen:

4.1.2 Satz
Seien (R, m) ein noetherscher lokaler kompletter Ring mit einem Koeffizientenkorper &, [ € Nt und z1,..., 2
Teil eines Parametersystems von R. [ := (x1,...,2;)R. Seien z;41,...,24 € R so, dass z1,...,24 ein
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Parametersystem von R ist. Ry bezeichne den (d-dimensionalen, regulédren) Unterring k[[z1,. .., x4]] von R.
Ist Assg, (D(H! )R, (%0))) abgeschlossen unter Generalisierung, so auch ASSR(D(HZ(II wrR)))-

(T15eees X))o N Y/ o e T e e e e AR AT AT (X

In Abschnitt 4.2 behandeln wir den reguldren Fall. Satz 4.2.1 fasst (im Wesentlichen) zusammen, was die

bisher gezeigten Sétze im regulidren Fall bedeuten. Ein weiteres Ergebnis ist

4.2.3 Satz

Seien (Ry, mp) ein noetherscher lokaler kompletter dquicharakteristischer Ring, dim(Ry) =n—1, k C Ry ein
Koeffizientenkorper und h € {1,...,n}. Weiter seien z1,...,x, € R Elemente mit m = /myg.
Iy := (z1,...,2p)Ro. R := k[[X1,...,X,]] sei eine Potenzreihenalgebra iiber &k in n Unbestimmten, I :=
(X1,...,Xn)R. Der durch X; — z; (i = 1,...,n) festegelegte k-Algebrahomomorphismus R — Ry induziert
einen modul-endlichen Homomorphismus ¢ : R/fR — Ry mit einem geeigneten Primideal f von R. Wir

setzen
D :=D(H}(R)) .
Dann gelten:
(i) D hat ein f enthaltendes assoziiertes Primideal genau dann, H?O (Ro) # 0 gilt.
Wenn wir (zusétzlich) annehmen, dass Ry regulér ist und dass height(Ip) < h ist, so gelten:
(i) Es gibt keine zu D assoziiertes Primideal, dass f enthélt und die Hohe n — h hat.
(iii) Wenn H’fo (Rp) # 0 ist (dann ist f in einem zu D assoziierten Primideal enthalten), gilt dim(R/q) > h

fiir jedes f enthaltende maximale Element in Assg(D).

Aussage (iii) hingt eng mit dem Gegenbeispiel zur Vermutung (+) aus [HS1, Kapitel 0] zusammen — vgl.

dazu den Abschnitt nach Satz 1.2.3 in dieser Zusammenfassung.

Abschnitt 4.3 behandelt den Fall h = n — 2 (in den Fillen h = n — 1 und h = n wurde Assg(D(H?(R)))

vollstandig bestimmt — vgl. Satz 4.2.1): Unter anderem zeigen wir:

4.3.1 Korollar
In der Situation von Satz 4.2.3 seien Ry regular und height(ly) < n — 2 =: h. Dann gilt

fR € Assp(D) <= HJ, *(Ro) #0 .
Falls dieses Bedingungen zutreffen, ist fR maximal in Assr(D).
Bekanntlich (vgl. [HL, Theorem 2.9) ist H}‘O_2(RO) genau dann trivial, wenn Spec(Rg/Ip) \ {mg/Ip} formal-
geometrisch zusammenhangend ist.
Der folgende Satz ist fiir sich genommen interessant und wird sich spéater (im Abschnitt 6.2: Verallge-

meinerung eines Beispiels von Hartshorne) als niitzlich erweisen:

4.3.4 Satz
Es seien k ein Korper, R = k[[X1,..., X,]] (n > 3) eine Potenzreihenalgebra iiber k in n Variablen und I
das Ideal (Xi,...,X,,—2)R. Ausserdem sei p € R ein Primelement mit p € I N (X,,—1, X,,)R. Dann ist die
Menge

{p € Spec(R)|p € Assr(D(H} ?(R))),p € p, height(p) = 2}
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unendlich.

Kapitel 5 behandelt die Frage: Was bedeutet es, dass ein gegebenes Ideal arithmetischen Rang eins oder
zwei hat? Unter anderem werden Kriterien fiir diese Bedingungen bewiesen. Zu Beginn jedoch prasentieren

wir ein Beispiel, bei dem arithmetischer Rang und kohomologische Dimension nicht tibereinstimmen:

5.1 Beispiel

Seien k ein Korper und R = k[[z,y, z, w]] eine Potenzreihenalgebra iiber k in 4 Variablen. Es sei

I:=/(zw—yz,93 — 222,23 —w?y)R .

Dann gilt
cd(I/(zw —yz)R) =1 # 2 =ara(I/(zw — yz)R) .

Die Hauptergebnisse in Abschnitt 5.2 sind Kriterien fiir ara(I) < 1 bzw. ara(l) < 2:

Definition
Seien (R, m) ein noetherscher lokaler Ring und X eine Teilmenge von Spec(R). Wir sagen, dass X Primver-

meidung erfillt, wenn fiir jedes Ideal J von R die Implikation

JC Up:>3poeX:Jgp0

peX
gilt.
5.2.5 Satz (i)
Es sei [ ein Ideal in einem noetherschen lokalen Ring (R, m) mit 0 = H2(R) = H3(R) = .... Dann gilt:

ara(l) <1 <= Assp(D(H}(R))) erfiillt Primvermeidung .

5.2.6 Korollar (i)
Sei I ein Ideal in einem noetherschen lokalen Ring (R, m). Genau dann gilt ara(l) < 2, wenn ein g €
existiert mit 0 = H?(R/gR) = H3(R/gR) = ... und so, dass Assg(D(H}(R/gR))) Primvermeidung erfiillt.

Zu beiden Kriterien gibt es analoge Aussagen im graduierten Fall (Satz 5.2.5 (ii) und Korollar 5.2.6 (ii)),

auch die Beweise sind analog.
Abschnitt 5.3 behandelt subtile Unterschiede zwischen der graduierten und der lokalen Situation.

Kapitel 6 enthélt verschiedene Anwendungen der in den vorangehenden Kapitel entwickelten Theorie: Als
erste Anwendung verweisen wir auf zwei neue Beweise (Satz 6.1.2 und Satz 6.1.4) des Satzes von Hartshorne-
Lichtenbaum; der besagt bekanntlich, dass fiir einen noetherschen lokalen kompletten Integritatsring (R, m)
und ein Ideal I C R genau dann H}hm(R)(R) # 0 gilt, wenn /T = m ist. Der Beweis von 6.1.2 verwendet
die Normalisierung von R und Matlis-Duale von lokalen Kohomologiemoduln; beim zweiten Beweis (6.1.4)
verwenden wir die Tatsache, dass iiber einem noetherschen lokalen kompletten Gorenstein-Ring (S, m) mit

dim(S) = n + 1 fiir jedes Primideal 3 von S der Héhe n

D(HE(S)) = Sy/S
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gilt (dies ist Lemma 3.2.1); besonders bemerkenswert ist dabei wohl, dass der Beweis von 6.1.4 die Ring-

Struktur von §;3 verwendet (némlich im Beweis von Lemma 6.1.3).

Hartshorne ([Hal, section 3]) untersuchte (im Wesentlichen) folgendes Beispiel: Seien k ein Korper, R =
k[[ X1, X2, X3, X4]] eine Potenzreihenalgebra iiber k in vier Unbestimmten, I = (X7, X3)R und p = X1 X4 +
X5X3 € R. Dann ist Suppr(H?(R/pR)) = {m}, aber H?(R/pR) ist nicht artinsch als R-Modul. In Abschnitt
6.2 der vorliegenden Arbeit zeigen wir zunéchst, dass D(H%(R/pR)) unendliche viele assoziierte Primideale
hat; somit ist H2(R/pR) nicht artinsch. Mit anderen Worten: Die Untersuchung der assoziierten Primideale
von D(H?(R/pR)) fiihrt zu einem einfachen Beweis der Tatsache, dass H2(R/pR) nicht artinsch ist. Diese

Idee wird nun verallgemeinert zu:

6.2.3 Satz
Seien k ein Korper, n >, R = k[[X1,...,X,]], I = (X1,...,Xn—2)R und p ein Primelement in R mit
p € (Xn—1,X,)R. Dann ist

H;*(R/pR)

nicht artinsch.

Auch Marley und Vassilev ([MV, theorem 2.3]) haben Hartshornes Beispiel verallgemeinert; man kann [MV,
theorem 2.3] und Satz 6.2.3 nur in einem Spezialfall vergleichen: Dies machen wir in Bemerkung 6.2.5 und
erhalten als Ergebnis, dass (in diesem Spezialfall) Satz 6.2.3 mit schwécheren Voraussetzungen auskommt
als [MV, theorem 2.3].

Im Abschnitt 6.3 ist (R, m) ein noetherscher lokaler Ring. Ist nun I = (x1,...,2;)R C R ein Ideal, das
mengentheoretisch vollstéindiger Durchschnitt ist (im Sinne von height(I) = i), so ergibt sich sofort H%(R) #
0, z. B. indem man lokalisiert. Hauptergebnis in 6.3 ist nun eine gewisse notwendige Bedingung fiir H; (R) #
0:

6.3.1 Satz (partiell)
Seien (R, m) ein noetherscher lokaler kompletter Integrititsring, der einen Korper k enthalte und zq,...,z; €

R (i > 1) eine Folge in R. Bezeichne Ry den Unterring k[[z1,...,x;]] von R. Dann gilt die Implikation
H}(R) # 0 = RN Q(Ro) = Ry

(dabei ist Q(Rp) der Quotientenkorper von Ry und die Durchschnittsbildung ist in Q(R) gemeint).

Uber gewissen Ringen (z. B. kompletten Cohen-Macaulay Ringen) gibt es eine Korrespondenz zwischen Ext-
Moduln auf der einen und lokalen Kohomologiemoduln auf der anderen Seite; diese wird als lokale Dualitét
bezeichnet, vgl. dazu etwa [BS, section 11]. Alle in dieser Korrespondenz vorkommenden lokalen Koho-
mologiemoduln haben m als Trégerideal. In Abschnitt 6.4 verallgemeinern wir dieses Prinzip auf beliebige
Ideale:

6.4.1 Satz
Seien (R, m) ein noetherscher lokaler Ring, I C R ein Ideal, h € N mit

HYy(R)#0 < I=h
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und sei M ein R-Modul. Dann gilt fiir jedes ¢ € {0,...,h} kanonisch
Ext(M, D(Hf(R))) = D(H7 (M) .

Die nachfolgende Bemerkung 6.4.2 zeigt, dass Satz 6.4.1 wirklich eine verallgemeinerte lokale Dualitéat ist.

In Abschnitt 7.2 zeigen wir, dass D(H%(R)) eine kanonische D-Modul-Struktur hat; damit ist folgendes
gemeint: Seien k ein Korper und R = k[[X1,..., X,]] eine Potenzreihenalgebra iiber k in n Unbestimmten.
Sei

D(R, k) C Endg(R)

der (nicht-kommutative) Unterring, der von allen Multiplikationen mit allen Elementen aus R und allen k-
linearen Derivationen erzeugt wird. D := D(R, k) wird als Ring der k-linearen Derivationen auf R bezeichnet.
(Links-) D-Moduln im Zusammenhamg mit lokaler Kohomologie wurden in [Lyl] studiert; darin wurde auch
gezeigt, dass (in sehr allgemeinen Situationen) lokale Kohomologiemoduln eine kanonische (Links-) D-Modul-
Struktur tragen. Wir zeigen nun (in 7.2), dass fiir jedes Ideal I C R = k[[X1, ..., X,,]] und fur jedes i € N
auch

D(H(R))

eine kanonische (Links-) D-Modul-Struktur hat; weiter zeigen wir, dass D(H%(R)) als D-Modul im Allge-
meinen nicht endlich erzeugt ist, insbesondere nicht holonom (siehe [Bj, sections 1,3] fiir den Begriff der
holonomen D-Moduln).

Seien (R, m) ein noetherscher lokaler Integritatsring und x1,...,2; € R (i > 1). In zahlreichen Situationen
(vgl. etwa Satz 3.1.3 (ii)) gilt dann

{0} € ASSR(D(HEIL,:@)R(R)))

(sogar immer falls H yr(R) # 0, wenn Vermutung (*) zutrifft). Es ist natiirlich, nach der Q(R)-

(11,~~~,wi

Vektorraum-Dimension von
D(H{,, ... onr(R) ®r Q(R)

zu fragen (dies ist eine sogenannte Bass-Zahl von D(Hl@1 ayr(R))). Es zeigt sich, dass diese Dimension

im Allgemeinen nicht endlich ist; genauer gilt:

7.3.2 Satz
Seien k ein Kérper und R = k[[X4,...,X,]] eine Potenzreihenalgebra iiber k£ in n > 2 Unbestimmten,
1 <i<nund I das Ideal (Xi,...,X;)R von R. Dann ist

dimg(r) (D(H;(R)) ®r Q(R)) = 00 .
In Abschnitt 7.4 untersuchen wir Moduln der Form H?(D(H%(R))). Das Hauptergebnis ist

7.4.1 Satz und 7.4.2 Satz (Spezialfall)
Seien (R, m) ein noetherscher lokaler kompletter regulirer Ring der Aquicharakteristik Null, I C R ein Ideal
der Hohe h > 1 mit H;(R) = 0 (I > h); weiter sei z = x1,..., ) eine R-regulire Folge in I. Dann ist

H} (D(H](R)))
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entweder gleich Null oder isomorph zu Eg(R/m). Im Falle I = (z1,...,2,)R trifft letzteres zu, i. e.
H} (D(H}(R))) = Er(R/m) .

In den Abschnitten 8.1 und 8.2 werden sogenannte ”attached” Primideale studiert, und zwar im Hinblick
auf lokale Kohomologiemoduln; 8.1 versammelt zahlreiche grundlegende (und teilweise natiirlich bekannte)
Eigenschaften von ”attached” Primidealen, 8.2 enthélt unsere Ergebnisse, d. h. Informationen tiber ”at-
tached” Primideale von lokalen Kohomoliemoduln. Schon in 8.1 zeigt sich ein enger Zusammenhang zwischen
assoziierten den assoziierten Primidealen vom Matlis-Dual eines R-Moduls M einerseits und den ”attached”

Primidealen von M andererseits. Hier eine Auswahl unserer Ergebnisse:

8.2.1 Satz

Seien (R, m) ein noetherscher lokaler Ring und M ein endlich erzeugter n-dimensionaler R-Modul. Dann gilt
Attp(Hg (M) = {p € Assp(M)|cd(a, R/p) =n} .

Dies war urspriinglich ein Ergebnis von Dibaei und Yassemi ([DY, Theorem A], vgl. auch [MS, theorem

2.2]); hier wird es mit anderen Methoden bewiesen. Neue Ergebnisse sind

8.2.3 Satz
Es sei (R, m) ein noetherscher lokaler d-dimensionaler Ring.
(i) Ist J ein Ideal von R mit dim(R/J) = 1 und H%(R) = 0, so gilt

Assh(R) C Attr(HY ' (R)) .
Ist R (zusétzlich) komplett, so gilt sogar
Attr(HY H(R)) = {p € Spec(R)|dim(R/p) =d —1,1/p + J =m} U Assh(R) .
(ii) Fiir jede Folge x1,...,z; in R gilt
{p € Spec(R)|x1,...,z; ist Teil eines Parametersystems von R/p} C AttR(sz17,,.,xi)R(R)) .

8.2.4 Korollar
Sei (R, m) ein noetherscher lokaler Ring. Dann gilt fir jedes x € R

Attr(Hyp(R)) = Spec(R) \ V(z) .

Die weitere Untersuchung zeigt, dass ein Ergebnis aus Abschnitt 8.1 (ndmlich Satz 8.1.13) als zusétzliche
Evidenz fiir unsere Vermutung (*) aufgefasst werden kann; die Details dazu sind etwas technisch — vgl.
Bemerkung 8.2.6 (iii) (¢).

Es gibt eine Theorie der lokalen Homologie ([T1], [T2]); diese ist in gewisser Weise dual zur lokalen Ko-
homologietheorie. Seien (R,m) ein noetherscher lokaler Ring, x = x1,...,x, eine Folge in m und X ein

artinscher R-Modul. Dann ist der i-te lokale Homologiemodul H;(X) von X beziiglich x definiert als

@HZ(KO(I?a s axn X)) ’

rs
neN
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wobei Ko(zt,...,2%; X) der Koszul-Komplex von X beziiglich 27, ...,z ist und wobei H; fiir die i-te Ho-
mologie dieses Komplexes steht. Man beachte, dass diese Homologien beziiglich n in naheliegender Weise
ein projektives System bilden. Es ist leicht zu sehen, dass H% ein R-linearer kovarianter Funktor von der
Kategorie der artinschen R-Moduln in die Kategorie der R-Moduln ist. Den Begriffen der (Krull-) Dimension
und der Tiefe (von noetherschen, also endlich erzeugten Moduln) entsprechen hier die Begriffe der noether-
schen Dimension N.dim(X) und der Weite width(X) eines artinschen R-Moduls X: Fiir X = 0 setzt man

N.dim(X) = —1, andernfalls bezeichnet N.dim(X) die kleinste Zahl » € N, zu der z1,...,x, € m mit
length(0 : X (x1,...,2,)R) < 00
existieren. Eine Folge x = x1,...,x, € m heisst X-koregulér, wenn fir jedes i =1,...,n
(0: X(z1,...,2i_1)R) = (0x(x1,...,2i_1)R)

surjektiv ist. width(X) ist definiert als die Lange (irgend)einer maximalen X-koreguldren Folge. [Oo] und

[Ro] sind Referenzen fiir diese Begriffe. Allgemein gilt
width(X) < N.dim(X) < 0o

fiir jeden artinschen R-Modul X; man nennt X ko-Cohen-Macaulay, wenn width(X) = N.dim(X) gilt.

Sei M ein endlich erzeugter Cohen-Macaulay R-Modul. Dann ist Hgfm(M)(M ) ko-Cohen-Macaulay mit

N.dim(Ha™") (M)) = dim(M) ([T1, Proposition 2.6]). Ausserdem gilt

Hihariars (W™ () = M

dim(M)
(wobei z1, ..., x4 ein Parametersystem fiir M sei). Seien nun X ein artinscher R-Modul mit N.dim(X) =d
und z = x1,...,24 € mso, dass (0 :x z) endliche Lange hat. Tang stellt die Frage nach der endlichen Erzeug-

barkeit von H%5(X) ([T1, Remark 3.5]). Wir zeigen zunichst mit einem Gegenbeispiel (8.3.1), dass diese
Antwort negativ zu beantworten ist; die anschliefende Bemerkung 8.3.2 beantwortet — unter zusétzlichen

Vorausstzungen — die Frage dann vollstandig:

8.3.2 Bemerkung
Seien (R, m) ein noetherscher lokaler regulirer d-dimensionaler Ring, X ein artinscher ko-Cohen-Macaulay
R-Modul mit N.dim(X) = d und z = z1,...,24 € m so, dass (Ox(x1,...,24)R) endliche Lange hat. Dann
gilt

H3(X) ist endlich erzeut als R-Modul <= R ist komplett.

In einer allgemeineren Situation gilt

8.3.3 Satz
Seien (R,m) ein noetherscher lokaler kompletter Ring und X ein artinscher R-Modul mit N.dim(X) = d;
seien z1,...,24 € m so, dass (0 :x (z1,...,24)R) endliche Linge hat. Dann ist H3(X) als R-Modul endlich

erzeugt.

Aus Satz 8.3.3 zusammen mit [T1, Remark 3.5] folgt leicht
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8.3.4 Korollar
Seien (R, m) ein noetherscher lokaler kompletter Ring und X ein ko-Cohen-Macaulay R-Modul, N.dim(X) =
d; seien x1,...,xq € m so, dass (0 : X(21,...,24)R) endliche Lénge hat. Dann ist H;'**(X) Cohen-

Macaulay (insbesondere endlich erzeugt). Im Falle d = dim(R) ist also Hj'"""“*(X) ein maximaler Cohen-
Macaulay R-Modul.

Nun ordnen wir jedem endlich erzeugten R-Modul M ordnen wir den (artinschen) R-Modul
Fy(M) = Ha" ™ (M)
und jedem artinschen R-Modul Xden (endlich erzeugten, 8.3.3) R-Modul
Ga(X) = Ho =7 am) (X))

zu. Fy bzw. G5 induzieren Abbildungen von der Menge der Isomorphieklassen aller noetherschen in die
Menge der Isomorphieklassen aller artinschen Moduln bzw. umgekehrt. Auf der anderen Seite induziert
auch der Matlis-Dualitatsfunktor D Abbildungen zwischen diesen beiden Mengen. Eine Untersuchungen der

Beziehungen zwischen diesen vier Abbildungen (Anmerkungen nach 8.3.4 und Satz 8.3.5) liefert das Ergebnis

8.3.6 Korollar, Aussage (ii)
Seien (R, m) ein noetherscher lokaler kompletter Ring und I ein Ideal von R mit I C Anng(M), dim(R/I) =
dim(M) und so, dass R/I Gorenstein ist. Dann gilt

M ist Cohen-Macaulay = Hompg (M, R/I) ist Cohen-Macaulay.

Unterabschnitt 8.4 ist eine weitere Anwendung des Zusammenspiels der weiter oben erwahnten vier Abbil-

dungen. Wir definieren zunéchst den Begriff einer Cohen-Macaulayfizierung:

8.4.1 Definition

Seien (R, m) ein noetherscher lokaler kompletter Ring und M ein endlich erzeugter R-Modul. Ein Obermodul
M von M heisst Cohen-Macaulayfizierung von M, wenn folgende drei Bedingungen gelten:

(i) M ist Cohen-Macaulay.

(i) dim(M) = dim(M).

(ifi) dim(M /M) < dim M —2 (diese Bedingung ist fquivalent zu He™ ™~ (1 /M) = go™™) (851 /M) = 0).

8.4.2 Satz
Jede Cohen-Macaulayfizierung von M (falls existent) ist zu (G2 o F»)(M) isomorph.

In [Go] wird ein anderes Konzept des Begriffes ” Cohen-Macaulayfizierung” verwendet. Unser Begriff ist
eine Verallgemeinerung dieses Konzeptes (siche Bemerkung 8.4.3 und Satz 8.4.5 in der vorliegenden Arbeit).

Abschliefend behandeln 8.4.6 und 8.4.7 (einfache) Beispiele von Cohen-Macaulayfizierungen.
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