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A COMMON FRAMEWORK FOR COLLOQUIAL
QUANTIFIERS AND PROBABILITY TERMS

A. C. ZIMMER

University of Regensburg,FRG

The importance of modal qualifiers for argumentative reasoning is
investigated and it is shown that colloquial quantifiers and uncertainty
expressions can be interpreted as fuzzy numbers in the interval [0,1].
Empirical procedures are suggested for the determination of these fuzzy
numbers.

The empirical results reveal that for propositions on a defined level of
abstraction colloquial quantifiers and probability terms can not only be
expressed as fuzzy numbers but furthermore can be used in according to the
rules for fuzzy combination numbers.

For specific areas of content well defined scope functions can be
empirically determined. These influence the meaning of colloquial
quantifiers systematically, that is, they catch the contextual meaning. A
somewhat related effect is observed in probability terms for conditional
propositions.
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1. INTRODUCTION: Schemes for Reasoning and Argumentation

In the history of Western thought, starting with Aristotles Organon,
mechanical procedures for reasoning have been devised serving as normative
theories for human reasoning and at the same time as tools for the processing
of evidence. The rise of psychological investigations of thought processes
has debunked the notion of logic as an - albeit normative - theory of human
reasoning. The question, however, ifand howformal approaches of reasoning
and human reasoning can be broughttogether, remains open. The approach
proposed here is intended to close the gap somewhat by proposing what
could be termed anapproachto aformal theory of informal reasoning (Zimmer
1984a).

In order to make more specific what such an approach is intended to
achieve, itseemsappropriateto compare classical formal approaches, thatis,
predicate calculusand probabilitytheory, withwhat is known about everyday
reasoning. In Table 1 the positions of predicate calculus, probability theory,
and everyday reasoning regarding central problems of reasoning are
compared.

The inspection of Table 1 highlights the fact that, in general, predicate
calculus and probabiity theory take very similar approaches towards
problemsand modes of reasoning despite their different structure. Exceptions,
however, are the evaluation of partial or circumstantial evidence and inthe
weighing of evidence by probabilities or by divers colloquial qualifiers; here
probability theory and everyday reasoning take simiar positions. What
distinguishes these points fromthe rest of Table 1? They apply to situations
where only approximate solutions are possible, where the reasoning is
invalid or does not lead either to the alternative "true/false", but where only
degrees of plausibility or veridicality can be reached.

As Toulmin (1964) observes, standard logic has been developed with an
eye on mathematics where such ambiguous situations are to be avoided at
nearly any cost (but see, for instance, Kline, 1980). In order to liberate logic
from this Procrustean bed, Toulmin suggests the reconstruction of logic
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according to the model of legal argumentation. He suggests a scheme of
syllogistic reasoning with the following components:

(i) claims propositions that are supposed to be true or to be at least
plausible to a certain degree

(ii) grounds or reasons for believing the claims to be valid (the usual form
isthat of explicitly or implicitly quantified statements)

(iii) warrants, statements about the relations between grounds and
claims (e.g. causality, necessity, sufficiency, contingency)

(iv) backing commonly shared knowledge (Smith, 1982) which provides
the rules for a combination of grounds and warrants in order to
justify the claims (e.g., rules of syllogistic reasoning or statistical
inference)

(v) modal qualifications general quantifiers and uncertainty
expressions, suchas possibly, usually, necessarily. They applytoto
the propositions and to the inferential process.

(vi) rebuttals alternative claims which can also be inferred from the
grounds, warrants, and the backing because of the modal
quantification of propositions and inferential rules. Rebuttals can
be overcome by either showing that they imply a smaller set of
consistent propositions than the claim or by comparing the overall
modal qualification of the rebuttals with the evaluation of the claims.

These components are combined as shown in Figure 1 (Toulmin, 1964, p.
104; the figure has been slightly changed in order to avoid inconsistencies).

DATA - (CLAIM) QUALIFIER)
Since [
|
| unless
( (WARRANT) qualifier)
|
N =Y Tl UL A L |
evaluation
on account of/ REBUTTAL
because
because
L—BACKING
FIGURE 1

A modified version of Toulmin’s (1964) model for syllogisms in
argumentation. Toulmin’s original model is indicated by upper-case letters
and bold lines.
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An example for this kind of syllogistic reasoning using an analysis of the
chains of arguments in the determination of the probable price of a used

book (see Figure 2).

x 1s a book W__T
&
x 1s used LR i >/ the book
& is very probably
x is damaged I —p-| inexpensiv ‘
J I unless
since since :
pommm oo ®---- .
| x is a ®
"used books "damaged books | (
| rare book
are inexpensive"” are ﬁ -
’ inexpensive" not the case
on account on account because
of of x is a textbook
textbooks ar
not rare
"a book is a Rule 1 about Rule 2 about Rule 3 about
conmodity" || commodities:.... commodities:.... commodities: ....
"if used, they "if damaged, "if not rare, they

loose value" they loose value"| are comparatively

inexpensive"

FIGURE 2
The application of the modified Toulmin model.



78 A.C. Zimmer

Figure 2 especially reveals the importance of implicit (...) or explicit
(usually, always etc.) quantifiers, for the evaluation (qualification) of the
claim. In order to develop a formalized version of Toulmins approach to
plausible reasoning, itis necessary to develop acommon framework for the
interpretation of explicit and implicit quantifiers and furthermore an
algorithm for their concatenation. Zadeh (1983) has suggested the
interpretation of quantifiers as fuzzy numbers inthe [0,1] interval and the use
of the operations of fuzzy numbers (Dubois & Prade, 1980) as the algorithm
fortheir concatenation.

2.FUZZY NUMBERS AND QUALIFIERS

The meaning of quantities like "about 50 %" or "slightly below 0.3"
(Smithson, 1987) and adding "about 50 %" and "a bit more than 10 %" with
the result "probably somewhat more than 60 %' seem to make sense
immediately. However, it is not clear how this intuitive meaning is reflected
in the formal definitions of fuzzy numbers and their rules of concatenation
(Dubois & Prade, 1980). The formal definitions allow for the proving of
abstract theorems in fuzzy numbertheory and for checks of consistency but
these formal definitions do not provide any guidelines for the mapping of
imprecise observable quantities into the different types of fuzzy numbers (L
S, 2, s/z, or z\s numbers) and for the setting of parameters. On the other
hand, Smithsons (1987) and others purely empirical approach characterizing
afuzzy number by a listing of relative frequencies is not sufficient either,
because he does not propose empiricallytestable rules for the concatenation
of these numbers. Such rules however can be derived from results on
approximate calculation in the areas of foreign exchange (Zimmer, 1984b)
and of the stock market (Zimmer, in preparation). For merely illustrative
purposes, let us start with fuzzy numbers of the form "standard number +
qualification" (e.g. "approximately 0.7").
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Figure 3(aand b) represents this fuzzy number where the core (0.7), and
thefuzzy upperand lower boundaries, (the fuzziness duetothe qualification)
can be discriminated. The fuzzy number can now be represented by the
following triple: lower boundary relative to the core, core, upper boundary
relative to the core (0.1/0.7,0.7, 0.15/0.7).
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FIGURE3

Fuzzy numbers consisting of a core (or prototypical) meaning of 0.7 and
fuzzy upper and lower boundaries. (a) is a fuzzy number with core interval,
(b) is a fuzzy number with a point-wise core.

Any two fuzzy numbers can be concatenated following these steps: (i)
calculating the resulting core by means of standard arithmetics, by (ii)
averaging the respective upper and lower boundaries, and by (iii)
determining the resulting boundaries from the a veraged boundaries in
relation to the resulting core. The operations with fuzzy numbers
corresponding to the standard operations in arithmetics are illustrated in
Figure 4(a-d).
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FIGURE 4
Operations withfuzzy numbers
a/fuzzy addition @
b/fuzzy multiplication ®
¢/ fuzzy substraction ©
d/fuzzy division &
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The described approach of handlingthe core and the fuzziness seperately
has been established empirically. Specifically, the think-aloud protocols ofthe
subjects reflectthis procedure. Forfuzzy numbers like several , most or likely
the same procedure can be applied provided the core has been determined
empirically.

3. FUZZY ARITHMETIC AS A MODEL FOR REASONING

Starting with the experimental studies by Zimmer (1982, 1984a, 1984b)
empirical evidence has been amassed for Yagers (1980) and Zadehs'
(1983ab,(1984) claimthatfuzzy numbers can be used forthe representation of
generalized quantifiers (Barwise & Cooper, 1981; Peterson, 1979) and
furthermore that human reasoning with these quantifiers can be modelled
according to the operations with fuzzy numbers. As noted above, further
experiméntal studies have led to modifications in the definition of fuzzy num
bers as well as of operations with them. These modifications, however, are not
crucial for the general claim.

From a formal point of view, quantifiers expressed as fuzzy numbers inthe
interval [0,1] and uncertainty expressions represented as fuzzy probabilities
are comperable. Furthermore, in chains of argumentation (see Figure 2) both
kinds of qualification can be found and should therefore be represented in a
common framework for the use in intelligent or expert systems (Zadeh,
1983c). Empirical analyses of uncertainty expressions (Zimmer, 1983, 1986a;
Wallsten, Budescu, Rapoport, Zwick, & Forsyth 1986; Zwick & Wallsten,
1987) have consistently shownthat verbal expressions like "probable", "likely",
or "toss-up" can be expressed as fuzzy numbers. Different experimental
techniques (e.g. pair comparison vs. staircase estimation), different forms
of display s (e.g. circle segments vs. random dots), and different samples of
uncertainty expressions (all expressions of a language community vs. only
those expressions that a subject has in his/her personal active vocabulary)
have led to seemingly conflicting results about the consistency of estimates
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andtherefore the applicability of verbal uncertainty expressions in decision
support or expert systems. There are two solutions for this problem: One
consists in the Wallsten et al., (1986) approach of determining the fuzzy
numbers for a complete lexicon of uncertainty expressions. This leads to
averaged meanings that can be assumed to be valid for an entire language
community. By means of iterative methods (Zimmer, 1986b), ambiguous
meanings (fuzzy numbers with more than one peak) can be resolved. The
problem with this approach is that the individuals lexicon of uncertainty
expressions might differ fromthat of the language community. The important
advantage of this approach, however, is its generality. The other solution for
the problem consists in concentrating onthe individual’s lexicon of uncertainty
expressions.

Calibrating individual vocabularies of uncertainty expressions by means of
staircase methods with random-dot displays Zimmer and Kérndle (1 987) has
resulted in fuzzy numbers that can be represented by (i) single-peaked
membership functions, (ii) of compar able shape and (iii) with the tendency
towards a proportional relation between the value of the core and the
fuzziness. To be more precise: in contrast to fuzzy numbers without
interval bounds, the fuzziness in the closed interval [0,1] is relative to the
smaller distance of each core from the upper or lower limit. These qualitative
aspects of the fuzzy numbers are consistent with the model described in
Part 2 above. It should be kept in mind that (iii) contradicts one of the
theoretical assumptions of Zimmer (1982, 1983), namely the assumption of
equal informativeness on the entire scale of judgment, and therefore equal
fuzziness for all uncertainty expressions in an individual active vocabulary.
However, the consequence of the unequal informativeness (low in the central
part and high in the extremes) is in accordance to the results reported by
Wallsten and his group (Wallsten et al., 1986).

The major disadvantage ofthis individualistic approach, specifically its lack
of generalizability, can be overcome by the procedure described in Zimmer
(1986b). Starting with the individuals expressions but then mapping them
intothe general lexicon. If a mapping does not result ina single-peaked fuzzy
number or if the fuzziness is excessive, it is iteratively searched for the
non-degenerate expression which captures best the initially intended
meaning.
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Interactive detemnination of unambiguous uncertainty expressions
(Zimmer 1986b).

During and by the interaction with this computer-controlled procedure,
subjectslearnto use only those expressions which have a meaning meaning
in accordance with that of the language community. However, this method
restricts the expressive power of the indivial lexicon.

The common framework for quantifiers and uncertainty expressions as
established by the assignation of fuzzy numbers in [0,1] has to be
complemented by a comparison of the algorithms of inference. The standard
algorithms, that is, syllogistic resolution and Bayesian weighing of evidence
are seemingly incomparable. However, since Zadeh (1983a) has shownthat
any form of syllogistic resolution can be modelled by fuzzy quantifiers and
fuzzy operators (addition, multiplication, and conjunction), itis possibleto use
the same operators for Bayesian inference. There is only one additional
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operator necessary, division, needed for working with conditional probabilities.
Onthe first glance this operator does not fit into the reasoning with quantifiers.
However, as Hormann (1983) and Zimmer (1986a) have shown, inthe colloquial
usage of quantifiers these are quite often conditioned on the background
knowledge about the situation. For instance, the utterance "many of the
convertibles" can only be properly modelled if the general meaning of many is
taken into account as well as the fact that convertibles form a very small
subsetof all cars. The implicit reasoning runs asfollows: if the cars in question
are convertibles, then even a small proportion of all cars fulfills the condition
of applying "many'. This construction of a conditional quantifier is
completely compatible with the notion of conditional probabilities. Using this
result, it is now possible not only to assign fuzzy numbers to the qualifiers in
Toulmin’s model (Figure 1 and 2) but also to interp and their combination
as fuzzy evaluations of operators (e.g. ® means fuzzy muitiplication).
Furthermore, the relations between the backing and the warrants becomes
straightforward fuzzy arithmetic.

4. CONTEXT SPECIFICITY OF QUALIFIERS

Yagers (1980) as well as Zadehs (1983a) models for the interpretation of
quantifiers in natural language as fuzzy numbers assume implicitly that there
isaone-to-onerelation between quantifiers and fuzzy numbers (for redundant
sets of quantifiers the relation might be many to one). One major
experimental result of Zimmer (1982, 1984b) was that for sufficiently rich
contexts (natural sciences vs. social sciences and everyday events) this
simplifyingassumption does not hold. Inthese contextsthe standard meaning
of quantifiers (see Figure 6) is modified by the subjects knowledge about the
normal scope of discourse in these contexts, specifically, how often events
are mentioned with an occurrence rate of x %. It has been shown that the
scope functions for contexts can be determined independently from the
quantifiers (Figure 7a) and that the context-denedant quantifiers (Figure 7b)
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result from the fuzzy conjunction of the standard quantifiers and of the
respective scope functions (the MIN-operator).

almo
none

FIGURE6
Standard meaning of colloquial quantifiers (Zimmer, 1984Db).

Slightly different is the situation for conditional quantifiers (see above)
where the background knowledge is taken care of by dividing the fuzzy
number for the standard meaning of the quantifier question by the fuzzy
munber for occurence rate for the eve nt in question. As mentioned above,
the notion of conditional quantifiers bridgesthe gap betweenthe apparently
disjoint types of modal qualifiers, namely, quantifiers and uncertainty
expressions or qualitative fuzzy probabilities. The context dependability of
explicit orimplicit conditioning. The procedures of Wallsten et al., (1986) as
well as of Zimmer (1983) and Zimmer and Koérndle (1987) assume implicitly
that uncertainty and frequency expressions can be estimated independently
from contextual influences. This is apparently true for impoed contexts like
circle segments and random dots but remains - atleast - questionable for more
realistic situations.
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Context dependability of quantifiers: (a) scope functions for contexts /from
above: everyday events, natural sciences, social sciences/ (b) resulting
context-dependent quantifiers /contexts as above/
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From Hormann s (1983) results one might conjecture that in situations
where the individuals have background knowledge, the meaning of their
observable lexicon is the result of conditioning the observable frequency on
the possible frequency. Despitethe fact thatthe operators are different (fuzzy
conjunction vs. fuzzy division) the result for quantifiers and uncertainty
expressions is comparable: The observable usage of modal qualifiers can be
deducedfroma fuzzy operation on the standard meaningandthe occurrance
rate of the background knowledge. In Figure 1 this context dependability is
indicated by the arrow from DATA to BACKING which results in
data-dependent constraints on the background knowledge (e.g. the rules for
commodities).

5.CONCLUSIONS

The common framework for the two major kinds of modal qualification
allows fora modelling of intricate nets of arguments (see Figure 2) by means
of fuzzy arithmetics. Furthermore, the variability of meaning caused by
individual differences and different context can be taken care of by the
generalization of this framework. This consists in a decomposition of the
observable meaning into the standard meaning and into the contextual or
individual constraints.
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