On the Growth Effects of North-South Trade:
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Technical Appendix on Transitional Dynamics

Lutz G. Arnold

This technical appendix contains the proof of Theorem 2 in our paper “On the Growth Effects of
North-South Trade: The Role of Labor Market Flexibility”. It is demonstrated that for initial values
£(0) close to £* and L™ (0) close to LV* there exists a unique trajectory converging to the steady state
(g%, €*, LV*) and that this convergent path may feature either monotonic convergence or damped

oscillations:

Theorem 2. The system of linear differential equations obtained by linearizing the system (6), (7),
(8) in a neighborhood of its steady state possesses a unique convergent path. Depending on parameter

values, this convergent path is monotonic or oscillatory.
The proof is difficult. We proceed in several steps. Let §(t) = y(t) — y* for y € {g,&, LN}. Then:

Result 1. The linearized version of the system (6), (7), (8) is:
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The system contains two state variables (¢ and LV) and one jump variable (§). So in order for a
unique convergent path to exist, exactly two eigenvalues of the system must have negative real parts.
To prove this, we let ¢ = (§,&,LV) and denote the Jacobian matrix in (T.1) as J*. Then (T.1)
can be rewritten as ¢ = J*p. Suppose there exist solutions to this system of the form ¢(t) = be?,
where b = (bg, be,byn)'. Then ¢ = gbe? = gp. Hence J*¢ = qyp or, letting I be the identity matrix,
(J* —ql)e = 0. Non-trivial solutions ¢ # 0 exist if and only if |J* — ¢I| = 0, that is

0=—¢+TrJ*¢* — BJ*q+ Det J* = f(q),

where:

Result 2.
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Figure T.1: The characteristic roots
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From f(0) = Det J* > 0 and f'(0) = —B J* > 0, it follows that there is exactly one positive real root,
say g3 (see figure T.1). The other two roots, ¢; and g2 say, are either real and negative or complex

conjugates. Theorem 2 asserts that:

Result 3. If q1 and q2 are complex conjugates, the real part is not positive.

Proof: Rewrite f(q) as

fl@)= (@1 — (a2 —a)(as —q) = —¢" + (@1 + @2 + ¢3)a° — [q1¢2 + g3(q1 + q2)]q + q14235.

Suppose q1 and g2 are complex conjugates with positive real part: q;/o = v F di with v > 0. Then the

coefficient of ¢ in the characteristic equation is negative:

—lq1g2 + g3(q1 + q2)] = —(v* + 6° + gs27) < 0.



This contradicts B J* < 0 and thus proves that exactly two eigenvalues have negative real parts.! Q.E.D.

To each eigenvalue ¢; corresponds a particular solution ¢(t) = bjeqjt of (T.1), where b; =
(bjg,bjg,bjLN)/ is the eigenvector associated with the eigenvalue g¢;. From (J* — g;jI)p = 0, it fol-

lows that (J* — ¢;1)b; = 0 or, spelled out in detail,
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Eliminating bje and b;p~ yields
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The general solution of (T.1) is obtained by combining the particular solutions ¢(t) = b;je%? for
Jj = 1,2,3 linearly: ¢(t) = ?:1(Bj/bjg)bjeqft, where the B;’s (j = 1,2,3) are arbitrary constants.

Since we are interested in the behavior of the convergent growth path, the coefficient of the particular
solution associated with the unstable eigenvalue g3 has to be set equal to zero: Bs/bs, = 0 and

o(t) = ?:l(Bj/bjg)bjeqjt. Evaluating this equation at ¢ = 0 and inserting (T.2) yields:
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Since the initial values £(0) and L™ (0) are given, this is a system of algebraic equations in §(0), By

and Bg. Solving for §(0) yields the initial growth rate:

Result 4. The initial growth rate g(0) satisfies
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1This can also be proved by applying the Routh-Hurwitz Theorem, which states that the number of eigenvalues with
positive real parts is equal to the number of sign changes in the scheme —1||Tr J* || — BJ* + Det J*/Tr J* || Det J*. If
Tr J* > 0 the sign scheme is —|| + || 4 ||+, so there is one sign change and hence one unstable eigenvalue. If Tr J* < 0,

the sign scheme is —|| — || 7||4. Again there is one sign change and one unstable eigenvalue.



Equivalently:
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Subtracting the former equation from the latter yields:

LO_ lH(g* +m+qj)] g*;mé:(()).

2

(B—97)3(0) = [H(ﬁ +m+q;)

Jj=1

Division by 8 — g gives the formula in Result 4. Q.E.D.

If the stable eigenvalues ¢; and ¢o are real, then the elements of b; and by as well as By and By are
real. So ¢(t) = Z?Zl(Bj /bjg)bjedt implies that §, € and LN converge monotonically to zero. If, on
the other hand, the stable eigenvalues are complex conjugates, that is q;/, = v F di with v < 0, then

the three variables display damped oscillations. For instance:

Result 5. The adjustment of the rate of innovation obeys

(t) = e | §(0) Cos(ét)—%g(o)sin(&) ,

where z = | ?:1(9* +m+q)|(g" +m)E0)/g* — (g% +m)g(0) is a (real-valued) constant.

Proof: Given §(0), either one of the two formulas for 5(0) and LY (0) can be used to solve for B;y. Taking

the first one, one obtains:
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The convergent growth path obeys p(t) = 22
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Now suppose the stable eigenvalues g1 and g2 are complex conjugates: ¢1/2 = v F ¢ (with v < 0). Then
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Q.E.D.

To prove Theorem 2, it remains to show that the stable eigenvalues ¢; and g2 may in fact be real (as
illustrated in Figure T.1) or complex. This is done by way of example. Let g_ denote the value of ¢
for which f(g) attains its local minimum (f’(0) = —B J* > 0 implies that a minimum exists). ¢; and

g2 are real if f(¢g—) < 0 and complex otherwise.
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Result 6. q_ s given by

Proof: Equating the derivative of f(g) to zero yields f'(¢) = —3¢*> +2Tr J*¢q— BJ* =0 or
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q— is the smaller solution of this quadratic equation. Since B J* < 0, the smaller solution is given by:
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Q.ED.

Result 7. The negative eigenvalues q1 and g2 may be real or complex.

Proof: Examples for both cases are easily found. Suppose a = 0.5, 8 = 1, p = 0.02. Further, assume
that LY /a is such that ¢g* = 0.03. Finally, let m = 0.1. Then Tr J* = —0.94538, Det J* = 0.04349 and
BJ* = —0.09938. Hence g— = —0.67904 and f(q—) = —0.14680 < 0. In this example, g1 and g2 are real.

Now, everything else equal, let m = 1. Then Tr J* = —0.94942, Det J* = 3.28528 and B J* = —2.26455, so



that ¢g— = —1.24114 and f(g—) = 0.92403 > 0. Here, the stable eigenvalues are complex and the dynamics
are cyclical. In both examples constructed above, the consistency requirement (10) is satisfied if L® is
sufficiently great. For the sake of completeness, it may be noticed that, from (9), .Z/N/CL = 0.06808 in the

first example and LY /a = 0.09117 in the second one. Q.E.D.

This completes the proof of Theorem 2. Q.E.D.



