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Organisation

Note
Apart from corrections of organisational notes, links and typing errors and a few improve-
ments to the content, this handout corresponds to the handout of the winter semester
2018/2019, version of 29 November 2018, which in turn corresponds to the handout of
the winter semester 2015/2016, version of 20 October 2015, apart from corrections and
improvements to the content, in particular in sections 5.2 and 5.3.
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Schedule and Scope

Schedule for the current winter term
• Week 1 and 2: Math Camp Part 3

(Part of the mandatory module Methods of Econometrics)

• Week 3 to 15: Mandatory module Methods of Econometrics

• for semester-accompanying performances see course homepage https://www.uni-regensburg.
de/business-economics-and-management-information-systems/economics-tschernig/
teaching/master/methods-of-econometrics/index.html

Format and ECTS
• 4 h lecture and 2 h tutorial

• 10 ECTS: corresponds to approx. 250 h to 300 h expenditure of time for the entire
module

Organisation

Contents, Dates and Rooms, Downloads, News

https://www.uni-regensburg.de/business-economics-and-management-information-systems/
economics-tschernig/teaching/master/methods-of-econometrics/index.html

Prerequisite for course participation

• Knowledge of the contents of the Math Camp Part 1 and 2.

• Helpful, but not required: knowledge of an introductory econometrics course, e. g. of
the bachelor course Introduction to Econometrics.

Aims of this course

(Basic) knowledge to answer the following questions

• How do I do a careful empirical/econometric analysis?

• What are the econometric methods?

• How can I assess the quality of an empirical analysis?

• Why and under which assumptions does an econometric method work?
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• How can I conduct empirical analyses with the free software R?

Benefit

During studying

• Basis for master programme, especially for the specialisation Data Science and Econo-

metrics.

• Basis for understanding advanced econometric textbooks.

• Understanding empirical analyses in other courses.

• Be able to conduct empirical analyses in the master’s thesis or a seminar paper (Cassar,
Engl, Gürtzgen, Jerger, Kindermann, Knoppik, Lee, Roider, Tschernig, Weber).

At work
• Data analyses increasingly important (Big Data, Open Data)!

• Programming skills are helpful in many professional activities.

Grade Composition and Exam

Grade composition

• Study-accompanying performances (25%):
Type of performances see course homepage

• Final exam (75%)

Final exam
• Date: Exam period

• Duration: 90 minutes

• Contains tasks on part 3 of the mathematical pre-course

Note — relevant if master studies started in Oct 2021 or later and Prüfung-
sordnung of 2021 applies)

To pass the module, the overall grade in the module must be 4.0 or better.

iv



Note — relevant if older Prüfungsordnung of 2015 applies)

To pass the module, a grade of 4.0 in the final exam is not su�cient if you have an
overall grade worse than 4.0 in the study-accompanying performances.

Software

In the course: Use of the R software.

• Advantages of R:

– very flexible mathematical-statistical programming language.

– free software: http://www.r-project.org/.

– is used in science and business.

– fast growing library of R packages for various tasks.

– anyone can program packages oneselve and make them available to the general public.

– wide distribution according to TIOBE Programming Index: http://www.tiobe.com/
index.php/content/paperinfo/tpci/index.html.

• Intensive use of R in the module. All R programs in Appendix A of the handout.

• Use of R:

– in the master courses Advanced Econometrics, Applied Financial Econometrics,
Quantitative Economics II, etc.

– in master’s theses at the chair of econometrics.

• R course:

– Programming with R (o�ered by the chair of econometrics, runs parallel to this course
during the winter term. Old versions available as screencast on GRIPS)
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Alternative software for econometric analyses — Overview

Graphical user interface

• EViews (EViews courses (Christoph Knoppik), programmable, available in the CIP
pool, also used in master course: Quantitative Economic Research II)

• Gretl (programmable, free software: http://gretl.sourceforge.net/)

• Stata (Stata course (see SPUR), available in the CIP pool)

• JMulTi (free software: http://www.jmulti.de/, master course: Quantitative Eco-
nomic Research II)

(Statistical) programming languages with ready-to-use program modules

• R, see above.

• Gauss (commercial)

• Ox (commercial)

• Matlab (commercial)

• Python (Data Science and Machine Learning)

• Fortran, C, C++ (General programming languages with extensive numeric libraries)

Computer Algebra Languages

• Maple (UR licence)

• Maxima (free software)

• Mathematica

Mandatory literature

Davidson, R. & MacKinnon, J.G. (2004). Econometric Theory and Methods, Oxford University
Press (http://econ.queensu.ca/ETM/)
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Literature for math camp for linear algebra

• Schmidt, K. & Trenkler, G. (2015). Einführung in die Moderne Matrix-Algebra. Mit

Anwendungen in der Statistik, 3. Auflage, Springer. Compact, easy-to-read German
textbook with many examples of arithmetic with matrices. (from the network of the
university full text available)

• Gentle, J.E. (2007) Matrix Algebra Theory, Computations, and Applications in Statistics,
Springer. Chapter 2 interesting for econometricians: detailed introduction to vector spaces
(from the network of the university full text available)

• Fischer, G. (2014) Lineare Algebra, 18. Auflage, Vieweg & Teubner. Section 1.4 basic intro-
duction for mathematicians, physicists, engineers, etc.(from the network of the university
full text available)

• Lütkepohl, H. (1996) Handbook of Matrices, John Wiley & Sons, Chichester. Excellent
reference book on linear algebra and its various matrices and associated calculation rules
and transformation possibilities.

Literature for math camp on probability theory

• Casella, G. & Berger, R.L. (2002). Statistical Inference, Duxbury - Thomson. Very detailed,
formal introduction to probability theory.

• Fahrmeir, L., Heumann, C., Künstler, R., Pigeot, I.& Tutz, G. (2016). Statistik. Der Weg

zur Datenanalyse, 8. Auflage, Springer. Simple introduction to statistics (from the network
of the university full text available)

• Steland, A. (2016). Basiswissen Statistik: Kompaktkurs für Anwender aus Wirtschaft,

Informatik und Technik, 4. Auflage, Spinger. Well-written, concise, technically precise
introduction to statistics (from the network of the university full text available)

Literature for review and supplementary literature

• Kleiber, C. & Zeileis, A. (2008). Applied Econometrics with R Springer, Springer. Very
good introduction to R (from the network of the university full text available)

• Steland, A. (2013). Basiswissen Statistik: Kompaktkurs für Anwender aus Wirtschaft,

Informatik und Technik, 3. Auflage, Springer. (from the network of the university here)

• Stock, J.H. & Watson, M.W. (2012). Introduction to Econometrics, 3. ed., Person, Addison-
Wesley. https://scholar.harvard.edu/stock/pages/introduction-econometrics

• Wooldridge, J.M. (2013). Introductory Econometrics. A Modern Approach, 5. Ed., Thomson
South-Western.
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Literature for further reading (in alphabetical order)

• Angrist, J. & Pischke, J. (2009). Mostly Harmless Econometrics. An Empiricist’s Compan-

ion, Princeton University Press.
(Well-readable introduction to the empirical evaluation literature)
http://press.princeton.edu/titles/8769.html

• Cameron, A.C. and Trivedi, P.K. (2005). Microeconometrics, Cambridge University Press.
(Methodology for microeconometric problems)
http://cameron.econ.ucdavis.edu/mmabook/mma.html

• Davidson, R. & MacKinnon, J.G. (1993). Estimation and Inference in Econometrics.
Oxford University Press.
Many details on the methodology for non-linear regression models,
http://qed.econ.queensu.ca/dm-book/

• Greene, W. (2012). Econometric Analysis. 7e, Prentice Hall.
Comprehensive reference book with moderate methodological depth,
http://pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm

• Hayashi, F. (2000). Econometrics, Princeton University Press.
Formally very clearly structured.
http://fhayashi.fc2web.com/hayashi_econometrics.htm

• Hansen, B. (2015). Econometrics http://www.ssc.wisc.edu/~bhansen/econometrics/

• Peracchi, F. (2001). Econometrics, John Wiley & Sons.
The statistical approach to regression with methodological depth,
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471987646,descCd-tableOfContents.
html

• Ruud, P.A. (2000). An Introduction to Classical Econometric Theory. Oxford University
Press.
The geometric approach with methodological depth

• Verbeek, M. (2012). A Guide to Modern Econometrics, 4th. ed., Wiley.

• Wooldridge, J. M. (2010). Econometric Analysis of Cross Section and Panel Data, 2nd.
ed., MIT Press.
A lot of intuition and methodical depth
http://mitpress.mit.edu/books/econometric-analysis-cross-section-and-panel-data

More organisational issues

• PC introduction to the computer language R either as a screencast or as part of
the first lecture after the pre-course in mathematics, see course homepage under “Current
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issues”

• Information events on studies abroad always take place at the beginning of the winter
semester. Exact dates on the Homepage of the International O�ces

• Nobel Lecture, see Homepage of the Department of Economics and Econometrics
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1. Linear Algebra

Why do you need linear algebra?

• For the analysis of the properties of the solutions of linear systems of equations

• Representation of multivariate data

• Representation of linear relationships

• To solve systems of linear equations
Example: Normal equations to derive the least squares estimator

• Part of non-linear optimisation algorithms

• Representation of geometric relations by systems of numbers (analytic geometry)
Matrices as geometric transformations

• All together: in econometrics and beyond as in machine learning

Overview
• Vectors

• Vector spaces

• Euclidean space and subspaces

• Matrices, calculation rules, special matrices and measures

• Matrices and linear mappings

• (Semi-)definite matrices

• Rules for the derivative of vector-valued functions

• Partitioned matrices



1. Linear Algebra

Literature references
• Schmidt & Trenkler (2015) Compact, easy-to-read German textbook with many exam-

ples for calculating with matrices.

• Gentle (2007, Chapter 2) (Full text access in the UR area): detailed introduction to
vector spaces

• Fischer (2014, Section 1.4) Basic introduction for mathematicians, physicists, engineers,
etc.

• Lütkepohl (1996) Excellent reference work on linear algebra and its various matrices
and associated calculation rules and transformation possibilities. Often helpful when
reading technical articles.
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1.1. Vectors

1.1. Vectors

Overview
• Space

• Euclidean space

• Vectors

• Dimension, length of a vector

Euclidean Space and Vectors

Space

In mathematics, a space is a set of mathematical objects with an additional structure.
I.e. operations are possible with respect to the elements of the set. (http://de.wikipedia.
org/wiki/Raum_(Mathematik))

Examples:

• Vector space

• Euclidean space (= vector space with scalar product)

• Probability space (=“set with set system and probability mapping”)

Euclidean Space, n-dimensional space

• The set underlying a Euclidean space is the set of ordered n-tuples x of real numbers:

Rn = {x = (x1, . . . , xn) : x1, . . . , xn œ R}.

The ordered n-tuples x = (x1, . . . , xn) are also called n-vectors or vectors for short.
Each ordered n-vector represents a point in the n-dimensional Euclidean space Rn, in
short: x œ Rn.

• The associated structure includes

– addition,

– scalar multiplication and
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– the scalar product.

as operations between the elements.

Examples:

• n = 1: x œ R1 Set corresponds to number line, elements are scalars

• n = 2: x œ R2 Set corresponds to the plane, elements are two-dimensional
vectors.

• n = 3: x œ R3 Set corresponds to space with length, width and height.

Further terms
• n: Dimension of x. n is also called length in linear algebra (in R too!).

Attention: The length of a vector often also denotes the Euclidean norm of a vector.
See Section 1.2.

• xi: Element or Component of x.

1.2. Vector spaces

Overview
• Vector space

• Addition and subtraction

• Zero vector

• Inverse vector

• Linear combination

• Line

• Scalar product or dot product (or inner product)

Definition
A set V with the operations

• Addition V ◊ V æ V

5



1.2. Vector spaces

• Multiplication by a scalar (Scalar Multiplication) R ◊ V æ V

is called a linear vector space, if, in addition

1. a zero vector and an inverse element exist for the addition and associativity and
commutativity apply and

2. distributivity and associativity apply to multiplication by a number, and multipli-
cation by one results in the same element again, i. e. multiplication and addition are
compatible.

(adapted from Fischer (2010, S. 76))

Remarks
• Linear Combination: Combination of the operations of addition and multiplication

with scalars:

–, — scalar, x, y œ V : –x + —y œ V .

Every linear combination of the vectors is contained in V .

Therefore, a vector space is a linear space.

Real-valued vectors and vector space

The set of real-valued n-vectors x œ Rn forms a linear vector space.

Verification – Operations

Let x, y œ Rn

• Addition of vectors of length n

Rn ◊ Rn æ Rn :
(x1, . . . , xn) + (y1, . . . , yn) := (x1 + y1, . . . , xn + yn) = z

x + y = z

• Multiplication by a number ⁄ œ R

R ◊ Rn æ Rn : ⁄ · x = ⁄ · (x1, . . . , xn) := (⁄ · x1, . . . , ⁄ · xn)

Verification – Conditions for addition
• Zero vector: There exists a zero vector 0 := (0, . . . , 0) such that it holds:

0 + x = x, 0 · x = 0
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• Inverse vector: For every vector x œ Rn there exists an inverse element z œ Rn that
maps it to the zero vector with the operation. The inverse vector is the negative
vector ≠x = ≠(x1, . . . , xn) := (≠x1, . . . , ≠xn). Check!

Verification – Conditions for scalar multiplication

• Distributivity for scalar multiplication: For –, — œ R, it holds that:

–(x + y) = –x + –y, (– + —)x = –x + —x

• Associativity of scalar multiplication

(–—) · x = – · (— · x)

Other properties

• Associativity of addition:

(x + y) + z = x + (y + z)

• Subtraction results from addition and multiplication by a number:

z ≠ y = z + (≠y) = x

• Two vectors x and y of length n are equal if and only if x1 = y1, . . . , xn = yn holds.

Note: The set of real numbers R with the mentioned operations also forms a vector space
(= special case for n = 1).

Straight line in Rn

Definition
• Two distinct points v, vÕ œ Rn determine a straight line

• In Rn: Let v, vÕ œ Rn be fixed. All points on the straight line defined by v and vÕ are
given by

L = {x œ Rn : x = v + ⁄w, ⁄ œ R}.

where w = vÕ ≠v. The set L is the image of the mapping � : R æ L µ Rn : ⁄ æ v+⁄w
and is called parameterisation of the straight line.
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1.2. Vector spaces

Straight line in R2 (in the plane)

• Special case for n = 2.

• All points x of a straight line in R2 can be represented as an equation with two unknowns
x = (x1, x2) and three fixed coe�cients a1, a2, b

a1x1 + a2x2 = b.

The three coe�cients a1, a2, b determine the position of the straight line and can be
determined from two given points of the straight line v, vÕ and vice versa.

• Determination of two points on the straight line for given coe�cients: For given x1, x2 can
be determined uniquely and vice versa, provided a1 ”= 0, a2 ”= 0. Example:

x1 = 0 :x2 = b

a2
a point of the straight line

x2 = 0 :x1 = b

a1
second point of the straight line

• Two straight lines intersect at exactly one point, unless they are equal or parallel
… a two-dimensional linear system of equations has one, infinitely many or no solution.

• Intersection of two straight lines: Solution x of the linear system of equations

a1x1 + a2x2 = b

c1x1 + c2x2 = d

Solve for x1, x2 by substitution or use of matrix algebra. See section 1.4.

Vector space: Scalar product

Scalar product or dot product (or inner product)

The mapping V ◊ V æ R gives a scalar as a result.

The additional existence of the scalar product for a vector space enables

1. a unique characterization of the relationship between the elements,

2. the characterization of the individual elements by determining their length.

Note: The scalar product is a special type of an inner product. Inner products can also be
defined for functions, for example. In general, an inner product < ·, · > always yields a real or
complex quantity as a result (Gentle 2007, Sections 2.1.4, 3.2.6).

In general, a
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• unique characterization of the relationship between the elements of a vector space is given
if a metric exists for the vector space,

• unique characterization of the relationship of individual elements of a vector space is given
if a norm exists for the vector space.

1.3. Euclidean space

Overview
• Vector space in Rn

• Euclidean space

• Norm

• Normed vector space

• Euclidean norm

• Metric

• Metric space

• Orthogonal vectors

• Linear independence

Scalar product in the vector space x, y œ Rn

Rn ◊ Rn æ R : < x, y >:=
nÿ

i=1
xiyi (1.1)

Definition Euclidean space

The vector space of all real-valued n-vectors x, y œ Rn, in which additionally the scalar
product Rn ◊ Rn æ R :< x, y >= q

n

i=1 xiyi is defined, is called Euclidean space.

The existence of the scalar product provides a descriptive geometric characterisation of the
Euclidean space.
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1.3. Euclidean space

Norm and normed vector space

A norm allows, in general terms, the quantitative evaluation of individual elements of a set
and, as can be shown, their relations to each other.

Norm for a vector space

The mapping || · || : V æ [0, Œ): assigns to each element x of the vector space a
non-negative real number ||x|| and satisfies the following properties:

1. If x ”= 0, then ||x|| > 0 and if ||x|| = 0 … x = 0.

2. ||–x|| = |–| ||x||.

3. ||x + y|| Æ ||x|| + ||y|| (Triangle inequality).

(Vgl. Gentle 2007, Section 2.1.5)

Normed vector space

a vector space whose elements can be evaluated/measured with a norm.

Various vector norms

• L2-norm or Euclidean norm:

||x||2 :=
ı̂ıÙ

nÿ

t=1
x2

t

The Euclidean norm measures the length of a n-dimensional vector:

||x||2 :=
A

nÿ

t=1
x2

t

B1/2

The modulus of a real number |x|, x œ R is the Euclidean norm in R.

• ˘ LŒ-norm or Chebyshev-norm: ||x||Œ := maxtœn |xt|. E. g. relevant when loading
vehicles, when no edge of an object to be transported may exceed a maximum length.

• ˘ Lp-norm:

||x||P :=
A

nÿ

t=1
|xt|p

B1/p

,

contains both cases already mentioned as special cases.
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Metric and metric space

Metric
A metric is a distance function d : V ◊ V æ [0, Œ) satisfying the following conditions,
where V denotes a vector space. For two objects x and y in V holds:

1. d(y, x) > 0, if x ”= y and d(y, x) = 0, if x = y,

2. d(x, y) = d(y, x),

3. d(x, z) Æ d(x, y) + d(y, z).

(Gentle 2007, Section 2.1.7)

Metric space

A normed vector space is automatically a metric space, since the induced metric
d(x, y) := ||x ≠ y|| satisfies all requirements.

Scalar product, norm, metric

In general (not only for Euclidean space)
Scalar product =∆ Norm =∆ Metric

< x, y >=
q

n

i=1 xiyi =∆ < x, x >=
q

n

i=1 x2
i

= ||x||22 =∆ d(x, y) = ||x ≠ y||2

Geometry of vectors in two-dimensional Euclidean vector space

• Notation: In the following we write: ||x|| = ||x||2.

• Geometry of addition of vectors: result is diagonal in parallelogram.

• Geometry of multiplication with a scalar –: –x is vector parallel to x with di�erent
length and possibly with opposite direction.

• Geometry of the scalar product or inner product of two vectors:
Product of the lengths of the two vectors and the cosine of the angle ◊ between them
(without proof)

< x, y >=
nÿ

i=1
xiyi = ||x|| ||y|| cos ◊. (1.2)

for validity: Given two special vectors in E2:

w =
1
1 0

2
,

z =
1
cos ◊ sin ◊

2
.
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1.3. Euclidean space

Scalar multiplication gives two more vectors:

x = –w, – > 0,

y = “z, “ > 0.

Then the inner products or scalar products are obtained

||w|| = 1,

||z|| =
1
cos2 ◊ + sin2 ◊

21/2
= 1,

< w, z > = w1z1 + w2z2 = cos ◊

and

||x|| = |–|||w|| = –,

||y|| = |“|||z|| = “,

< x, y > =< –w, “z >= –w1“z1 + –w2“z2 = –“ < w, z >

= –“ cos ◊

= ||x|| ||y|| cos ◊.

Orthogonal vectors

• The inner product of two vectors is zero if and only if the two vectors are orthogonal to
each other (perpendicular to each other), since cos 90o = 0. I. e.:
< x, y >= 0 ≈∆ the vectors x und y are orthogonal to each other.

• Cauchy-Schwarz Inequality

| < x, y > | Æ ||x|| ||y|| or < x, y >2 Æ < x, x > < y, y > .

This follows from (1.2) and ≠1 Æ cos ◊ Æ 1.

Linear independence

• Linear independence: k vectors xi, i = 1, . . . , k, (with positive length) are linearly
independent, if there are no k ≠ 1 scalars ci such that

xj =
kÿ

i=1
i”=j

cixi, 1 Æ j Æ k

holds.

Example: Let the columns of the n ◊ k matrix X be linearly independent.
Then, there exists only a zero vector “, i.e. no “ with positive length, such that

kÿ

i=1
xji“i

= 0, j = 1, . . . , n.
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1.4. Matrices

Overview
• Definition

• Addition of matrices

• Zero matrix

• Scalar multiplication

• Subtraction of matrices

Matrices

Definition
• A matrix A is a rectangular scheme of nm numbers, n, m œ N,

A :=

Q

cccca

a11 · · · a1n

a21 · · · a2n

... . . . ...
am1 · · · amn

R

ddddb
= (aij)i=1,...,m,j=1,...,n

= (aij)

• Dimension of a matrix: Number of rows m and number of columns n.
Short notation: (m ◊ n)-matrix or m ◊ n-matrix.

• The entries aij, i = 1, . . . , m, j = 1, . . . , n are called elements or coe�cients of a
matrix.

Remarks
• Note: Often, in addition to the dimension n, a vector is defined as a column or row

vector.

x =

Q

cca

x1
...

xn

R

ddb

¸ ˚˙ ˝
column vector

or x =
1
x1 · · · xn

2

¸ ˚˙ ˝
row vector

However, in R, no column or row property is assigned to the class of vectors. This only
happens with the class of matrices. Remember this!
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1.4. Matrices

• In R the class matrix exists. It is needed to define column or row vectors.

• A (m ◊ n) matrix consists of n column vectors of length m, or m row vectors of length
n. In the case of real numbers as elements one writes

A œ Rm◊n.

Since n vectors of dimension m are present.

Remarks – continued
• Two matrices of the same dimension are identical if all coe�cients are equal.

• The elements can come from di�erent sets: e. g. N, R, the complex numbers C or
polynomials.

• Each table corresponds to a matrix.

• A column vector of length m corresponds to a (m ◊ 1) matrix. A row vector of length
n corresponds to a (1 ◊ n) matrix.

Basic operations with matrices

• The basic operations addition and multiplication by a number from section 1.1 can
also be applied to matrices.

• All further properties concerning these operations from section 1.1 apply accordingly to
matrices as can be seen in the following.

1.4.1. Addition of matrices

The addition of two matrices A, B with the same dimension m and n again gives a (m ◊ n)
matrix.

The (i, j)-th element is just the sum of the (i, j)-th elements of the matrices to be added.
Q

cca

a11 · · · a1n

... aij

...
am1 · · · amn

R

ddb +

Q

cca

b11 · · · b1n

... bij

...
bm1 · · · bmn

R

ddb =

Q

cca

a11 + b11 · · · a1n + b1n

... aij + bij

...
am1 + bm1 · · · amn + bmn

R

ddb

Example: Q

ca
3 4 1
6 7 0

≠1 3 8

R

db +

Q

ca
≠1 0 7
6 5 1

≠1 7 0

R

db =

Q

ca
2 4 8
12 12 1
≠2 10 8

R

db
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Example: Be careful:
A

1 2 3
0 2 ≠2

B

+
A

3 6
1 4

B

is not defined!

Zero matrix

Definition
A (m ◊ n)-matrix 0 is called zero matrix if all entries are 0.

It follows: Q

cca

a11 · · · a1n

... aij

...
am1 · · · amn

R

ddb +

Q

cca

011 · · · 01n

... 0ij

...
0m1 · · · 0mn

R

ddb =

Q

cca

a11 · · · a1n

... aij

...
am1 · · · amn

R

ddb

bzw.
A + 0 = A ’A

1.4.2. Scalar multiplication

Multiplying a matrix A by a number ⁄ again gives a matrix. Here, each element aij is
multiplied by ⁄.

⁄

Q

cca

a11 · · · a1n

... aij

...
am1 · · · amn

R

ddb =

Q

cca

⁄a11 · · · ⁄a1n

... ⁄aij

...
⁄am1 · · · ⁄amn

R

ddb .

1.4.3. Subtraction of matrices

Definition of a negative matrix

The matrix ≠A results from multiplying a matrix by a scalar or from the matrix that
must be added to A to get the zero matrix.

≠A = ≠

Q

cca

a11 · · · a1n

... aij

...
am1 · · · amn

R

ddb =

Q

cca

≠a11 · · · ≠a1n

... ≠aij

...
≠am1 · · · ≠amn

R

ddb .

Subtraction
A ≠ B = A + (≠B).
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1.5. Other operations with matrices

It follows:
Q

cca

a11 · · · a1n

... aij

...
am1 · · · amn

R

ddb ≠

Q

cca

b11 · · · b1n

... bij

...
bm1 · · · bmn

R

ddb =

Q

cca

a11 ≠ b11 · · · a1n ≠ b1n

... aij ≠ bij

...
am1 ≠ bm1 · · · amn ≠ bmn

R

ddb

1.5. Other operations with matrices

Overview
• Matrix multiplication

• Element-wise multiplication or Hadamard product

• Transpose of a matrix

• Calculation rules

• Multiplication of vectors: Inner and outer product

1.5.1. Matrix multiplication

• Requirement for matrix multiplication AB of two matrices: a (k ◊ r) matrix A and
a (m ◊ n) matrix B:

– The number of columns r of A is equal to the number of rows m of B,
i.e. A must have dimension (k ◊ m) and B dimension (m ◊ n).

– This condition is necessary and su�cient.

• The order of multiplication:

– cannot be interchanged if k ”= n,

– can be interchanged if k = n, but generally with di�erent results.

• Matrix multiplication is based on the scalar product

• Notation: (AB)ij denotes the (i, j)-th element of the matrix AB.

Calculation of the matrix product

16



The (i, j)-th entry of the matrix product AB is defined as the scalar product of the i-th row
of A (a row vector) with the j-th column of B (a column vector):

(AB)ij =
1
ai1 ai2 · · · aim

2
·

Q

cccca

b1j

b2j

...
bmj

R

ddddb

= ai1b1j + ai2b2j · · · aimbmj

=
mÿ

h=1
aihbhj

Example: Q

ca
a b
c d
e f

R

db

A
A B
C D

B

=

Q

ca
aA + bC aB + bD
cA + dC cB + dD
eA + fC eB + fD

R

db .

Note: The product in reverse order is not defined!

A
A B
C D

B Q

ca
a b
c d
e f

R

db

Dimension of a matrix product

The matrix product AB inherits the number of rows r from A and the number of columns
n from B:

A · B = C
(k ◊ m) · (m ◊ n) = (k ◊ n).

• Good practice: Check the dimensions of the matrices before each matrix multiplication!
Especially when programming!

• Note in R: The matrix product is given as A %*% B. In other languages, however, often
with A*B.

No commutative property for matrix multiplication

• Given a (n ◊ m) matrix A and a (m ◊ n) matrix B

A · B = C
(n ◊ m) · (m ◊ n) = (n ◊ n).

B · A = D
(m ◊ n) · (n ◊ m) = (m ◊ m).
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1.5. Other operations with matrices

• Even if A and B are quadratic, i.e. number of rows and columns are equal, m = n,
AB ”= BA can occur.

No commutative property for matrix multiplication

Example: A
2 1
1 1

B A
1 ≠1
0 2

B

=
A

2 0
1 1

B

,

while

A
1 ≠1
0 2

B A
2 1
1 1

B

=
A

1 0
2 2

B

.

Identity matrix

The (n ◊ n) matrix

I =

Q

cccca

1 0 · · · 0
0 1 · · · 0
... ... . . . ...
0 0 · · · 1

R

ddddb
,

where aii = 1, ’i and aij = 0, ’i ”= j, is called the identity matrix.

Properties of the identity matrix I:

• Multiplicative identity for matrix multiplication:

– for each (m ◊ n) matrix A, it holds that

AI = A, (1.3)

– for each (n ◊ m) matrix B, it holds that

IB = B. (1.4)

• I corresponds to 1 in the real numbers.
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Element-wise multiplication (Hadamard product)

For two (m ◊ n) matrices A and B, element-wise multiplication for the (i, j)-th entry of
the Hadamard product A § B yields

(A § B)ij = aijbij

The resulting matrix again has dimension (m ◊ n) like A and B.

Example: A
a11 a12
a21 a22

B

§
A

b11 b12
b21 b22

B

=
A

a11b11 a12b12
a21b21 a22b22

B

Remarks:

• In R, A*B is used for the element-wise product! In other languages this notes the matrix
product!

1.5.2. Calculation rules for matrices

• Associativity for addition and matrix multiplication:

(A + B) + C = A + (B + C),
(AB)C = A(BC)

• Commutative property for addition

A + B = B + A

• Distributivity for matrix multiplication

A(B + C) = AB + AC,
(A + B)C = AC + BC

Reminder: In general: AB ”= BA: Matrix multiplication not commutative!

Transpose of a matrix

Definition: Transpose of a matrix A

Notation: AT or AÕ.
The transpose of a (k ◊ n)-matrix A is a (n ◊ k)-matrix obtained by transposing each
row so that (i, j)-th element of A becomes the (j, i)-th element of AT .
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1.5. Other operations with matrices

The calculation can also be done by interchanging rows and columns:

First column of A becomes first row of AT ,

Second column of A becomes second row of AT ,

Example:
A

a11 a12 a13
a21 a22 a23

B
T

=

Q

ca
a11 a21
a12 a22
a13 a23

R

db ,

A
a11
a21

B
T

=
1
a11 a21

2
.

Calculation rules with transposed matrices

Addition and multiplication by a number

Given two (m ◊ n) matrices A and B, and a scalar –

(A + B)T = AT + BT

(A ≠ B)T = AT ≠ BT

(AT )T = A
(–A)T = –AT

It is a good exercise to prove these rules!

Matrix multiplication

Given a (k ◊ m) matrix A and a (m ◊ n) matrix B. It holds that

(AB)T = BT AT (1.5)

• Note the swapping of the order!!

• Notation:
1
(AB)T

2

ij
denotes the (i, j)-th element of (AB)T . Analogous to previous

notation.

• R-command: t(A).

Proof of (1.5):
1
(AB)T

2

ij
= (AB)ji (Definition of the transpose)
= q

h Ajh · Bhi (Definition of matrix multiplication)
= q

h(AT )hj · (BT )ih (Definition of the transpose, twice)
= q

h(BT )ih · (AT )hj (a · b = b · a) for scalars
= (BT AT )ij (Definition of matrix multiplication.)
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Therefore, it holds that (AB)T = BT AT . QED

Multiplication of vectors

Special case of the transposition of a matrix

• If a vector x œ Rn is defined as a column vector, the transposition of x results in a row
vector with the same n-tuple

xT =

Q

cca

x1
...

xn

R

ddb

T

:=
1
x1 · · · xn

2

• The notation xÕ is also frequently used instead of xT .

Inner product

The scalar product < x, y >= q
n

i=1 xiyi implies the following vector multiplications

< x, y >=
nÿ

i=1
xiyi

and if x, y column vectors

< x, y >=
1
x1 · · · xn

2
Q

cca

y1
...

yn

R

ddb = xT y = yT x

• Another option is the outer product.

Outer product

For two column vectors x, y of length n one obtains for xyT a (n ◊ n) matrix (see section
1.5.1)

xyT =

Q

cca

x1
...

xn

R

ddb
1
y1 · · · yn

2
=

Q

cca

x1y1 · · · x1yn

... . . . ...
xny1 · · · xnyn

R

ddb .

Be careful:

• In both cases, only vectors with the same length can be multiplied with each other.

• Vectors of di�erent lengths cannot be multiplied with each other.
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1.6. Important special matrices

1.6. Important special matrices

Overview
• Square matrix

• Diagonal matrix

• Symmetric Matrix

• Upper/lower triangular matrix

• Idempotent matrix

Square matrix

A (n ◊ n) matrix is a square matrix. The number of columns and rows is equal.

Diagonal matrix

A square (n ◊ n) matrix A is a diagonal matrix, if all nondiagonal elements aij, i ”= j,
i, j = 1, . . . , n are zero.

Symmetric matrix

A square (n ◊ n) matrix A is symmetric, if for all i, j = 1, . . . , n aij = aji, or

A = AT

holds.

Upper triangular matrix

A square matrix A is an upper triangular matrix if for all i > j, i, j = 1, . . . , n, it holds
that: aij = 0.

Lower triangular matrix

A square matrix A is a lower triangular matrix if for all i < j, i, j = 1, . . . , n, it holds
that: aij = 0.
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Idempotent matrix

A square matrix A is called idempotent, if

AA = A.

holds.

Examples:

Diagonal matrices

A
a 0
0 b

B

or

Q

ca
1 0 0
0 2 0
0 0 3

R

db

Symmetric matrices

A
a b
b d

B

or

Q

ca
1 2 3
2 4 5
3 5 6

R

db

Upper triangular matrix

A
a c
0 b

B

or

Q

ca
1 2 9
0 2 0
0 0 3

R

db

Lower triangular matrix

A
a 0
c d

B

or

Q

ca
1 0 0
2 4 0
3 5 6

R

db
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1.7. Measures of matrices

1.7. Measures of matrices

Overview
• Trace

• Rank

• Determinant

1.7.1. Trace of a matrix

Definition
The trace of a square matrix A is the sum of the elements aii on the diagonal

tr(A) =
nÿ

i=1
aii

The trace is a mapping from Rn◊n to R.

Example:

tr(I) = n, tr
A

1 3
a b

B

= 1 + b

Calculation rules
Given (n ◊ n) matrices A, B and a scalar – œ R:

• tr(A) = tr
1
AT

2

• tr(–A) = – tr(A)

• tr(A + B) = tr(A) + tr(B)

• further rules in Schmidt & Trenkler (2006, Section 3.1).

Check!
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1.7.2. Rank of a matrix

Definition
The rank rk(A) is a mapping from Rm◊n æ N that assigns to a (m ◊ n) matrix A the
maximum number of vectors (either row or column vectors) that are linearly independent.

• A (m ◊ n) matrix A has full rank, if the rank of the matrix is equal to the smaller
dimension, i.e.

rk(A) =

Y
]

[
m, if m Æ n and all m rows are linearly independent,
n, if m Ø n and all n columns are linearly independent.

• A (m ◊ n) matrix A has full column rank if rk(A) = n.

• A (m ◊ n) matrix A has full row rank if rk(A) = m.

Remarks

• A matrix that does not have full rank has a rank deficiency.

• The rank is smaller than the column number k of X if columns of X are linearly dependent.
Then

– a matrix XÕ can be formed consisting of kÕ linearly independent columns of X such that
rk(X) = kÕ < k and

– for the subspaces, see definition in section 1.9, it holds that ”(X) = ”(XÕ),

– also XT X has a rank deficiency, since rk(X) = rk(XT X) = kÕ, and is singular. (Cf.
MLR.3 in Introduction to Econometrics).

• R code : rankMatrix() in R package Matrix

Calculation rules
Given (m ◊ n) matrices A, B:

• 0 Æ rk(A) Æ min(m, n)

• rk(A) = rk(AT ) = rk(AT A) = rk(AAT )

• rk(A + B) Æ rk(A) + rk(B)

• rk(AC) Æ min(rk(A), rk(C))

• further rules in Schmidt & Trenkler (2006, Section 3.2).
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1.7. Measures of matrices

1.7.3. Determinants

Determinant
• A determinant is a mapping Rn◊n æ R, which assigns a real number to a square

matrix A.

• The determinant has an important role in determining the solutions of linear systems
of equations but also in geometry. Fischer (2010, Section 3.1.1)

• The determinant is noted as |A| or as det(A).

• The calculation of a determinant can be done recursively. Gentle (2007, Section 3.1.5)
or Schmidt & Trenkler (2006, Section 3.3).

• For n Æ 3 there are simple calculation formulas.

˘ Geometric Interpretation: The (n ◊ 1) vector defines in the n-dimensional Euclidean
space En an n-dimensional parallelepiped (= parallelogram for n = 2) for which a volume (for
n = 2 an area) can be calculated.

If a (n ◊ 1) vector x is multiplied from the left by the matrix A, this corresponds to a mapping
of

En ≠æ En : x ≠æ z = Ax.

The determinant |A| indicates by how much the volumes determined by x and z respectively
di�er (An example for n = 2 can be found in Davidson & MacKinnon 2004, Section 12.2, pp.
511-512).

Calculation of the determinant for n = 2, 3

• (2 ◊ 2) matrix

A =
A

a b
c d

B

, det A = |A| = ad ≠ bc.

• (3 ◊ 3) matrix (Sarrus’ Rule)

A =

Q

ca
a b c
d e f
g h i

R

db

det A = |A| = aei + bfg + cdh ≠ gec ≠ hfa ≠ idb
Q

ca
a b c
d e f
g h i

R

db
a b
d e
g h
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1.8. Matrix inversion

Overview
• Definition of an inverse matrix

• Calculation for (2 ◊ 2) matrix

• Existence

• Calculation rules

The inverse of a matrix

• is defined only for square matrices.

• results from the solution of a linear system of equations.

• plays a central role in matrix algebra.

Inverse of a matrix
A square matrix A is called invertible if there exists a square matrix B such that it
holds:

AB = BA = I.

The matrix B is called the inverse A≠1.

• The inverse is a mapping Rn◊n æ Rn◊n.

• A non-invertible matrix A is called singular.

• An invertible matrix A is called regular or nonsingular.

Calculation of the inverse for n = 2, 3

• (2 ◊ 2) matrix

A≠1 =
A

a b
c d

B≠1

= 1
|A|

A
d ≠b

≠c a

B

• (3 ◊ 3) matrix

A≠1 =

Q

ca
a b c
d e f
g h i

R

db

≠1

= 1
|A|

Q

ca
ei ≠ fh ch ≠ bi bf ≠ ce
fg ≠ di ai ≠ cg cd ≠ af
dh ≠ eg bg ≠ ah ae ≠ bd

R

db
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1.8. Matrix inversion

• For n > 3, complicated procedures are necessary, which are best left to the computer.

Existence of the inverse

• Existence of the inverse: The inverse A≠1 exists if and only if the determinant of A is
non-zero, |A| ”= 0. This holds for all n!

• Important: If the determinant is close to zero in calculations, large numerical inaccuracies
can occur. Therefore, when programming, the use of the inverse is avoided if possible.

• If the inverse exists, a linear system of equations

Ax = b

is uniquely solvable:
x = A≠1b

• For non-square and non-invertible matrices there are generalised inverses.

Calculation rules for inverses

Let A be regular.

• (A≠1)≠1 = A

•
1
AT

2≠1
= (A≠1)T

• Let B be regular. Then AB is regular and (AB)≠1 = B≠1A≠1.

• If A is a diagonal matrix, then A≠1 = (1/aii).

Calculation rules for determinants

Given (n ◊ n) matrices A, B and a scalar ⁄ œ R:

• |A| = 0 ≈∆ rk(A) < n ≈∆ A is singular

• |A| ”= 0 ≈∆ rk(A) = n ≈∆ A is regular

• |⁄A| = ⁄n|A|

• |AB| = |A||B|

• |AT | = |A|
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• |A| = r
n

i=1 aii, if A is a diagonal or a triangular matrix.

• further rules e. g. in Schmidt & Trenkler (2006, Section 3.3).

1.9. Euclidean subspaces

Overview
• Basis vectors in En

• Euclidean subspaces

• Column space of a matrix

• Orthogonal complement

Basis vectors in En

Definition
n di�erent (n ◊ 1) vectors are basis vectors if no basis vector can be represented as a
linear combination of the other (n ≠ 1) basis vectors. I. e., the basis vectors are linearly
independent.

Remarks
• Each element in Euclidean space En can be represented as a linear combination of

n basis vectors.

• One then says: The n basis vectors span En, i. e. form an Euclidean space En. If
one denotes the n basis vectors by xi, then the set of all vectors in En is given by

I

z œ En

-----z =
nÿ

i=1
bixi, bi œ R, i = 1, . . . , n

J

.

Euclidean subspaces
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1.9. Euclidean subspaces

Definition
If one reduces the number of basis vectors to k < n, only a subset of the vectors can be
represented in En. Such a subset forms an Euclidean subspaces.

Notation and ways of speaking

• We denote the subspace spanned by k basis vectors {x1, x2, . . . , xk} by ”(x1, x2, . . . , xk),
or ”(X), if all basis vectors are combined in the matrix X = (x1, x2, . . . , xk).

Column space of a matrix

• The set of vectors z contained in the subspace, i. e. all linear combinations of the
columns of the (n ◊ k) matrix X, can be described as

”(X) = ”(x1, x2, . . . , xk) :=
I

z œ En

-----z =
kÿ

i=1
bixi, bi œ R

J

. (1.6)

• One says that the subspace ”(X) corresponds to the column space of the matrix X.

Orthogonal complement

• The orthogonal complement to the subspace ”(X) is another subspace in En, for
which it holds that

”‹(X) = ”‹(x1, x2, . . . , xk) (1.7)
:=

Ó
w œ En

---< w, z >= wT z = 0 for all z œ ”(X)
Ô

.

Question: Let dim ”(X) = k be the dimension of ”(X). Then what is dim ”‹(X)?
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1.10. Matrices and linear mappings

Overview
• Mapping between two vector spaces

• Linear mapping between two vector spaces

• Kernel and image of a linear mapping

Given two Euclidean vector spaces that can have di�erent dimensions n and m. Let x œ Rn

and y œ Rm. The mapping

F : Rn æ Rm,

Q

cca

y1
...

ym

R

ddb =

Q

cca

a11 · · · a1n

... . . . ...
am1 · · · amn

R

ddb ·

Q

cca

x1
...

xn

R

ddb ,

for short
F(x) = y = Ax

assigns to each point x in the n-dimensional Euclidean space Rn a point y in the m-dimensional
Euclidean space Rm.

Linear mapping

A mapping
F : Rn æ Rm, F(x) = y = Ax

is called linear, if the following properties hold:

1. F(x + z) = F(x) + F(z)

2. F(⁄x) = ⁄F(x)

for all x, z œ Rn, ⁄ œ R.

Kernel and image of a linear mapping

Let V œ Rn and W œ Rm. For the mapping F : V æ W

• Im F := F(V) denotes the image of this mapping,
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1.11. Matrix representation of linear systems of equations

• Ker F := F≠1(0) denotes the kernel of this mapping.

• The kernel can be determined by F≠1(y) = A≠1y with y = 0 if the inverse exists.

• The kernel determines the set of all x œ V , whose image is just the origin in W .

1.11. Matrix representation of linear systems of equations

Overview
• Definition of suitable matrices

• System of equations in matrix form

• Unique solution

Consider a typical system of linear equations:

a11x1+ · · · +a1nxn = b1
a21x1+ · · · +a2nxn = b2

... ... ...
ak1x1+ · · · +aknxn = bk.

The linear system of equations can be represented more compactly with matrices.

Definition of suitable matrices: (k ◊ n)-coe�cient matrix A, (n ◊ 1)-variable vector
x and (k ◊ 1)-parameter vector b

A =

Q

cca

a11 · · · a1n

... aij

...
ak1 · · · akn

R

ddb , x =

Q

cca

x1
...

xn

R

ddb and b =

Q

cca

b1
...

bk

R

ddb .

System of equations in matrix form

32



The system of equations is then:
Q

cca

a11 · · · a1n

... aij

...
ak1 · · · akn

R

ddb ·

Q

cca

x1
...

xn

R

ddb =

Q

cca

b1
...

bk

R

ddb .

In compact form
Ax = b.

The matrix product Ax yields a (k ◊ 1) vector equal to the (k ◊ 1) parameter vector b when
x is a solution of the system of equations.

Unique solution

If A is regular, i. e. invertible, then there exists a unique solution

x = A≠1b.

1.12. (Semi-)definite matrices

Overview
• Quadratic form

• Positive definite and positive semi-definite matrices

• Negative definite and negative semi-definite matrices

• Indefinite matrices

Quadratic form

xT Ax = q
k

i=1
q

k

j=1 xixjAij is a quadratic form. The result is a scalar.

Positive definite und semidefinite matrices
• A (k ◊ k) matrix A is called positive definite, if for any (k ◊ 1) vector x with positive

norm
xT Ax > 0

holds.

• A (k ◊ k) matrix A is called positive semidefinite, if for any (k ◊ 1) vector x with
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1.12. (Semi-)definite matrices

positive norm it holds that
xT Ax Ø 0.

Negative definite and semidefinite matrices

• A (k ◊k) matrix A is called negative definite, if for any (k ◊1) vector x with positive
norm it holds that

xT Ax < 0.

• A (k ◊ k) matrix A is called negative semidefinite, if for any (k ◊ 1) vector x with
positive norm it holds that

xT Ax Æ 0.

Indefinite matrices
Matrices that are neither positive nor negative (semi-)definite are called indefinite.

• If A = BT B, then A is always positive semidefinite, since

xT BT Bx = (Bx)T (Bx) = ||Bx||2 Ø 0. (1.8)

If B has full rank, A is positive definite. Why?

• The diagonal elements of a positive definite matrix are positive. Moreover, for every positive
definite matrix A there exists a matrix B such that A = BT B holds. Here B is not unique.

• A matrix A is called negative (semi-)definite, if ≠A is positive (semi-)definite.

Example:

I =
A

1 0
0 1

B

is positive definite. This is because for every vector z =
A

z0
z1

B

with ||z|| > 0, it

holds that
1
z0 z1

2 A
1 0
0 1

B A
z0
z1

B

= z2
0 + z2

1 > 0.

Example: The matrix M =
A

0 1
1 0

B

is indefinite, since it is neither positive nor

negative semidefinite. This is because for z =
A

z1
z2

B

one obtains

1
z1 z2

2 A
0 1
1 0

B A
z1
z2

B

=
1
z2 z1

2 A
z1
z2

B

= 2z1z2.

Depending on the choice of z1 and z2, the result is positive, zero or negative.

34



1.13. Calculation rules for the derivative of vector-valued functions

Overview
• First partial derivatives of scalar products

• First partial derivatives of linear combinations

• First partial derivatives for quadratic forms

• ˘ Jacobian matrix

First partial derivatives of scalar products

Given are the (n ◊ 1) column vectors v and w. For the first partial derivative of the
scalar product z =< v, w >= vT w = wT v = q

n

i=1 viwi with respect to wi, it holds that
ˆz/ˆwi = vi. Collecting all first partial derivatives with respect to w in a column vector

ˆz

ˆw =

Q

ccccca

ˆz

ˆw1
ˆz

ˆw2...
ˆz

ˆwn

R

dddddb
,

results in
ˆz

ˆw = v.

First partial derivatives of linear combinations

For z = Aw with

z =

Q

ccca

a11 a12 · · · a1n

a21 a22 · · · a2n

. . . . . . . . . . . . . . . . . . .
am1 am2 · · · amn

R

dddb

Q

cccca

w1
w2
...

wn

R

ddddb

one obtains the first partial derivatives

ˆz
ˆwT

= A
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1.13. Calculation rules for the derivative of vector-valued functions

First partial derivatives for quadratic forms

For the quadratic form v = wT Aw

v =
1
w1 w2 · · · wn

2

Q

ccca

a11 a12 · · · a1n

a21 a22 · · · a2n

. . . . . . . . . . . . . . . . . .
an1 an2 · · · ann

R

dddb

Q

cccca

w1
w2
...

wn

R

ddddb

one obtains the first partial derivatives

ˆv

ˆw =
1
A + AT

2
w.

˘ Jacobian matrix

Let a vector-valued function be given for x œ Rn

f : Rn ≠æ Rm : x ≠æ g(x) ©

Q

ca
g1(x)
. . .

gm(x)

R

db .

The (m ◊ n) matrix

J(x) © ˆg(x)
ˆxT

©

Q

ccca

ˆg1(x)
ˆx1

ˆg1(x)
ˆx2

· · · ˆg1(x)
ˆxn... ... . . . ...

ˆgm(x)
ˆx1

ˆgm(x)
ˆx2

· · · ˆgm(x)
ˆxn

R

dddb (1.9)

of the first order partial derivatives is called the Jacobian matrix. If the Jacobi ma-
trix is square, the determinant of the Jacobian matrix exists (often called the Jacobian
determinant):

|J(x)| =
-----
ˆg(x)
ˆxT

----- . (1.10)
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1.14. Partitioned matrices

Overview
• Addition, subtraction and matrix multiplication

• Inversion of a partitioned matrix

Partitioned matrices

A =
A

A11 A12
A21 A22

B

,

where the submatrices Aij have dimension (mi ◊ nj) and m1 + m2 = m, n1 + n2 = n
holds.

Calculation rules
Pay attention to the correct dimensions of the matrices and submatrices!

• AT =
A

AT

11 AT

21
AT

12 AT

22

B

• Addition: replace in standard addition elements with submatrices.

• Matrix multiplication: replace elements by corresponding submatrices

AB =
A

A11B11 + A12B21 A11B12 + A12B22
A21B11 + A22B21 A21B12 + A22B22

B

,

Inversion of a partitioned matrix

The inverse of a partitioned matrix can be calculated as follows
A

A B
C D

B≠1

=
A

A≠1 + A≠1BWCA≠1 ≠A≠1BW
≠WCA≠1 W

B

with W = (D ≠ CA≠1B)≠1.
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2. Fundamentals of Probability Theory

Overview
• Important basic concepts

• Why do we need probability theory?

• Random variables

• Distribution and density functions (univariate and multivariate)

• Conditional probabilities

• Expected values and moments

• Conditional expected values and moments

• Important probability distributions

Literature references
• Davidson & MacKinnon (2004, Section 1.2): concise overview of the basics of probability

theory.

• Casella & Berger (2002): very detailed, formal introduction to probability theory.

• Fahrmeir et al. (2016): simple introduction to statistics.

• Steland (2013): well-written, concise, technically precise introduction to statistics.
(Available from the university network as full text here.)

https://doi.org/10.1007/978-3-642-37201-8


2.1. Important basic concepts

Overview
• Population

• Sample

Important basic concepts

Definition: Population

“set of all statistical units about which one aims to gain information”.

The population (Fahrmeier et al. 2004, Abschnitt 1.3.1, S. 14)

• depends on the question of interest,

• can be finite (proportions of a production with quality defects), infinite (set of all possible
rail delays) or hypothetical (set of all potential buyers).

The population

• can in principle be observable (all students of the UR, amount of organically produced
grain in a region within one year) or

• be unobservable (e. g. e�ect of a measure for a single individual)

Definition: Sample

A sample is typically a subset of the population that can be or has been observed and can
be used to analyse the population.

Examples:

• Participant of a lecture

• 1 kg of grain per 100 randomly selected fields within a region

• Participant in the socio-economic panel
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2.2. Why do we need probability theory?

2.2. Why do we need probability theory?

Overview
• Illustrative task

• Inductive statistics, descriptive statistics, exploratory data analysis

• Inductive statistics and probability theory

Why do we need probability theory?

Task on gender distribution

What is the gender distribution of students at the beginning of the master’s programme
in Economics at the University of Regensburg?

• Population: All students starting a master’s programme in Economics this semester.

• Sample: All students starting a master’s programme in Economics this semester and
sitting in this lecture room.

Inductive statistics versus descriptive statistics versus exploratory data analysis

Statements about
• sample/data:

– Description of key data indicators: descriptive statistics

– Looking for what else the data might reveal about formal models or hypothesis
testing: exploratory data analysis

• population: inductive statistics

What statements can be made about the population?

To what extent can statements be made about the gender proportions in the population based
on the information in this sample?
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Possible answers without probability theory

On the basis of the sample, interval statements about the proportion of female students
are possible. However, the larger the population is compared to the sample, the less
precise these statements become.

Possible answers with probability theory

• Point predictions

• Interval predictions with shorter intervals and coverage probabilities

• always require additional assumptions. More detailed statements than statements
about the possible range of the gender proportion in the population require additional
assumptions!

Examples:

– The gender ratio in the population corresponds to that in the sample.

– A random sample is present.

Continuation of the task on gender distribution

Responses without probability theory

The following table allows interval statements without probability theory after the actual
sample data have been completed.
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2.2. Why do we need probability theory?

Subpopulation Total
number

Number Proportion female

female possible
range

point
prediction
based on
sample

correct

Sample: present
students of
Methods of
Econometrics
who start a
master’s
programme in
Economics this
semester
present + 1
missing students
of Methods of
Econometrics
who start a
master’s
programme in
Economics this
semester
all students who
start a master’s
programme in
Economics this
semester at the
UR

Answers with probability theory

still require some patience and the study of probability theory!
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2.3. Probability space

Overview
• Sample space

• Event

• Elementary event

• Sigma-algebra

• Probability function

• Probability space

• Calculation rule for probabilities

Sample space (outcome space)

Definition Sample space

The sample space � is the set of all possible outcomes of a random experiment.

The set can contain countably many or uncountably many outcomes.

Examples:

• Gender of a student: � = {female, male}

• Urn with 4 balls of di�erent colours: � = {yellow, red, blue, green}

• future monthly income of a household: � = [0, Œ)

Remarks
• If the outcomes are finitely many, then the individual outcomes are often denoted by

Êi. For S outcomes, � is then

� = {Ê1, Ê2, . . . , ÊS}.

• If there are infinitely (more precisely: uncountably) many outcomes, then a single one
of them is often denoted by Ê.
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2.3. Probability space

Events

Definitions
• When a specific outcome occurs, it is referred to as an event.

• If the event contains exactly one element of the sample space, it is called an elementary
event.

• An event is a subset of the sample space �, i. e. any set of possible elementary
events = any subset of the set � including � itself.

• The sample space � is a certain event.

• The complementary event Ac to the event A contains all events that are in the
sample space � but not in A.

Examples:

• Urn: Possible events are e. g. {yellow, red} or {red, blue, green}. Complementary
event to the event A = {yellow, red} is Ac = {blue, green}.

• Household income: Possible events are all possible subintervals and combinations
thereof, e. g. (0, 5000], [1000, 1001), (400, Œ), 4000, etc.

Remarks
If one uses the general notation with the Ê’s, then we get

• in the case of S elementary events: {Ê1, Ê2}, {ÊS}, {Ê3, . . . , ÊS}, etc.

• in the case of infinitely (more precisely: uncountably) many elementary events within
an interval � = (≠Œ, Œ): (a1, b1], [a2, b2), (0, Œ), etc., where the lower limit is always
less than or equal to the upper limit, i. e. (ai Æ bi).

Sigma-algebra

Preliminary remarks: Let’s consider our example with the 4 balls in di�erent colours. To
make the example even more general, we denote Ê1 = yellow, Ê2 = red, Ê3 = blue, Ê4 = green:
� = {Ê1, Ê2, Ê3, Ê4}. Let us now suppose that we are interested in particular in whether the
following events occur in one draw:

C = {{Ê1}, {Ê1, Ê3, Ê4}} ,

which are combined in the set of subsets C. If we now take a closer look at this collection of
subsets C, we notice that the elementary event {Ê1} can occur, but what do we do if it does

not occur. Then inevitably the event {Ê2, Ê3, Ê4} must occur, but it is not included in the
collection. This means that we cannot assign a probability to this event. Since this makes no
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sense, we have to extend the set C at least by the event {Ê2, Ê3, Ê4}. It follows that a collection
of subsets, for each of which we want to define probabilities, must have certain properties. For
example, at least the complement of an event must always be contained in the collection of
subsets. We can also consider that any union of subsets must also be included in the collection.
If a collection of subsets fulfils these requirements, then it is called a sigma-algebra.

Note: A ‡-algebra is a set of events (subsets) that allows the assignment of probabilities with
respect to all contained events. For those interested, the definition:

˘ Definition of a sigma algebra

A set of subsets of � is called sigma algebra or ‡-algebra (‡-field), if the following
properties hold for this set of subsets. A ‡-algebra is often denoted by F :

1. ÿ œ F

2. If A œ F , then Ac œ F

3. If A1, A2, . . . œ F , then tŒ
i=1 Ai œ F

Remark: In the case of finitely many elementary events, the ‡-algebra is identical to the
power set. In the case of infinitely many elementary events, for example in the case of the
possibe intervals of real numbers, the ‡-algebra is smaller than the power set. This concept
was developed precisely for this case, as the power set would be ”too big”.

Sigma algebra and probability function

Probability function

Let there be given a set � and a ‡-algebra F . Then a probability function P is a function
with domain of definition F that satisfies the following conditions:

1. P (A) Ø 0 for all A œ F

2. P (�) = 1, P (ÿ) = 0.

3. If A1, A2, . . . are pairwise disjoint, then P (tŒ
i=1 Ai) = qŒ

i=1 P (Ai)

The probability function assigns a probability to each possible event in the ‡-algebra.

For more on the ‡-algebra, see e. g. Steland (2010, Section 2.1.3) or A somewhat condensed
introduction to probability theory.

It can be seen that the definition of a probability function is only possible with respect to a
sample space � and a suitable ‡-algebra. Strictly speaking, one would always have to say to a
probability function P to which � and F it belongs.Then one obtains a
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2.4. Random variables

Probability space

The triple (�, F , P) is called probability space.

If no ambiguities arise, the specification of the probability space is often omitted. That is
what we do here as well.

Calculation rule for probabilities

Let A, B œ F . Then, it holds that

P (A
€

B) = P (A) + P (B) ≠ P (A
‹

B) (2.1)

2.4. Random variables

Overview
• Definition and examples of a random variable

• Realisation of a random variable

• Notations

• Discrete and continuous random variables

• Probability space of random variables

Random variables

Definition
A real random variable X is a function from a sample space � to R that assigns a
number X(Ê) to each elementary event Ê œ �. For X(Ê) œ R

X : � ‘æ R : Ê ‘æ X(Ê).

Each event A œ F can be mapped to a set {X(Ê) œ R|Ê œ A œ F}.

Examples:

• Students: X(Ê = female) = 0, X(Ê = male) = 1.

• Urn example: X(Ê1) = 0, X(Ê2) = 3, X(Ê3) = 17, X(Ê4) = 20.

• Household income: X(·) Ø 0
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Realisation of a random variable
Specification x of a random variable X(Ê) observed in a sample such that x = X(Ê).

Important: A random variable as such cannot be observed because it is a function of all
possible outcomes.

Notations of random variables
• In this section we will write X instead of X(Ê). Realisations or possible specifications

are denoted by x.

• In the econometric literature, due to a lack of su�cient symbols, a distinction is
generally not made between a random variable X and a possible realisation x, but
both are denoted with the same symbol (examples: dependent variable yt, error term
ut in the linear regression model).

Types of random variables

• Discrete random variables: They can take on finitely many (e. g. binary random
variables) or infinitety, but countably many values (e. g. count data � = N)

Œÿ

i=1
P (X(Ê) = xi) =

Œÿ

i=1
P (X = xi) = 1

• Continuous random variables:

– Examples: X œ R, X œ [0, Œ).

– Note: P (X = x) = 0. Why?

– Instead, one considers probabilities for intervals, e. g. P (X Æ x), P (a < X Æ b),
P (0 < X) ∆ cumulative probability distribution.

Probability space of random variables

A probability function for the random variable X(Ê) on � can only be determined, if

1. there is a new set of elementary events �Õ corresponding to the image set of the random
variable for the elementary events and

2. a new ‡-algebra F Õ that can be obtained from F .

˘ Details

The probability function for the random variable has as argument A œ F Õ in the
case of
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2.4. Random variables

• discrete random variables numbers,

P (X = x) = P (X(Ê) = x) = P ({Ê œ �|X(Ê) = x}).

• continuous random variables intervals of (real) numbers with

P (X œ A) = P (X(Ê) œ A) = P ({Ê œ �|X(Ê) œ A})

Urn example:

• �Õ = {X(Ê1), X(Ê2), X(Ê3), X(Ê4)} = {0, 3, 17, 20}

• Possible ‡-algebra: F Õ = {ÿ, {0, 3}, {17, 20}, �Õ}

• P (X œ {0, 3}) = 3/8, P (X œ {17, 20}) = 5/8.

Then a new probability space results. For X œ R one writes (R, B, PX). The ‡-algebra B
is an appropriate set of all real intervals, called the Borel algebra.

However, to simplify the notation, we still often write {�, F , P}.
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2.5. Distribution and density functions

Overview
• Univariate probability distribution (cumulative distribution function (CDF))

• Multivariate distribution and density functions

2.5.1. Univariate distribution and density functions

Overview
• Univariate probability distribution (cumulative distribution function (CDF))

• Properties of distribution functions

• Probability density functions

• Interpretation of probability density function

• Standard normal distribution and normal distribution

• CDF of a binary random variable

• Support

• Quantiles and quantile functions

Univariate probability distribution

probability distribution (cumulative distribution function (CDF))

A probability function for a scalar random variable X is defined by

F : R ‘æ [0, 1] : F (x) ©P (X Æ x)
=P (X(Ê) œ (≠Œ, x]).

(2.2)

Properties of distribution functions

• limxæ≠Œ F (x) = 0

• limxæŒ F (x) = 1
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2.5. Distribution and density functions

• F (x) is monotonically nondecreasing

• P (a < X Æ b) = F (b) ≠ F (a)

• F (x) = P (X Æ x) = P (X < x), if X is continuous.

Probability density functions

Motivation of probability densities

For a continuous random variable Y , the probability ’Y takes the value y’ is just zero, i.e.
P (Y = y) = 0. Intuition: Area under an integral at a point is zero.

Instead, one must consider an interval for Y , e.g. [a, b] or frequently (≠Œ, y]. For the
latter, one obtains the probability distribution

F (y) = P (Y Æ y) Y continuous= P (Y < y),

which increases monotonically in y. Thus, one can also consider the change in probability
when the interval length increases by a marginal amount ” > 0. This gives the absolute
change in probability

P (Y Æ y + ”) ≠ P (Y Æ y)

and the relative change
P (Y Æ y + ”) ≠ P (Y Æ y)

”
.

Now, by letting the marginal change ” of the interval length go towards 0, we obtain the
probability density function

f(y) = lim
”æ0

P (Y Æ y + ”) ≠ P (Y Æ y)
”

,

which must be positive at some y, because otherwise there would be no change in the
probability when the interval length is changed. The probability density thus indicates
the rate at which the probability changes when the interval is marginally changed.

Since
P (y < Y Æ y + ”) = P (Y Æ y + ”) ≠ P (Y Æ y),

one obtains, to put it crudely,

P (y < Y Æ y + ”) ¥ f(y)”.

One can therefore approximate the probability that a realisation of Y is observed in a
certain interval (y, y + ”] with the product of the density and the interval length. This
approximation is better the smaller ” is. The density is approximately proportional
to the probability that Y is observed in a very small interval around y.
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Probability density function (PDF)

For a continuous random variable with a di�erentiable probability distribution F (x), the
first order derivative is called probability density function.

f(x) © dF (x)
dx

, (2.3)
⁄

x

≠Œ
f(z)dz = F (x). (2.4)

Important probability distributions

Standard normal distribution
x ≥ N(0, 1) for x œ R

„(x) = 1Ô
2fi

exp
3

≠1
2x2

4
, �(x) =

⁄
x

≠Œ
„(z)dz. (2.5)

x
−3 −2 −1 0 1 2 3

0.1
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0.3

0.4

φ(x)

x
−3 −2 −1 0 1 2 3

0.5

1

Φ(x)

Figure 2.1.: PDF and CDF of the standard normal distribution (R program see section A.1, page 324)

Normal distribution
x ≥ N(µ, ‡2) with density

f(x) = 1Ô
2fi‡2

exp
A

≠1
2

(x ≠ µ)2

‡2

B

= 1
‡

„
3

x ≠ µ

‡

4
. (2.6)

Note: (2.6) can be derived using change of variables (2.39).

CDF of a binary random variable
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2.5. Distribution and density functions

F (x) =

Y
__]

__[

0 für x < 0
p for 0 Æ x < 1
1 for x Ø 1.

(2.7)

Further remarks

• CDFs can have jump discontinuities, CDFs can also be defined for random variables that
are partly continuous and party discrete (e. g. in the case of censored variables).

• Support: Let a random variable X be given. The domain on which a density function
fX(x) is positive is called support X µ R of a density function:

X = {x : fX(x) > 0}.

• See section 2.9 for details of important probability distributions.

A tabular overview of many probability distributions can be found on the course homepage.

Quantiles

Quantile

The –-quantile q– of a distribution for a random variable X is defined by

F (q–) = P (X Æ q–) = –. (2.8)

Die quantile function is:
q– = F ≠1(–). (2.9)

R commands
Calculating a quantile of the standard normal distribution: with qnorm().

Example: The P (X Æ q0.85) = 0.85 quantile of the standard normal distribution
is q0.85 = 1.036433. It is obtained with the Rcommand qnorm(0.85)= 1.036433.
It is plotted vertically in the graphs and in red. The blue shaded area under the
density is just – = 0.85.

Important quantiles

• Median: q0.5

• Quartiles: q– with – = 0.25, 0.5, 0.75

• Quintiles: q– with – = 0.2, 0.4, 0.6, 0.8
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Figure 2.2.: 0.85 quantile of the standard normal distribution (R program see section A.1, page 326)

• Deciles: q– with – = 0.1, 0.2, . . . , 0.8, 0.9

• Percentiles: q– with – = 0.01, 0.02, . . . , 0.98, 0.99

2.5.2. Multivariate distribution and density functions
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2.5. Distribution and density functions

Overview
• Multivariate distribution and density functions

• Joint probability distribution

• Marginal probability distribution

• Joint density function

Joint probability distribution function

for two or more random variables X1, . . . , Xm

FX1,X2,...,Xm
(x1, x2, . . . , xm) © P ((X1 Æ x1) fl · · · fl (Xm Æ xm)) (2.10)

= P (X1 Æ x1, . . . , Xm Æ xm).

Marginal probability distribution

FXi
(xi) © P (Xi Æ xi). (2.11)

Marginal probability density function for a continuous random variable Xi

fXi
(xi) © dFXi

(xi)
dxi

. (2.12)

Joint probability density function

for two or more continuous random variables X1, . . . , Xm œ R with partially di�erentiable
CDF:

fX1,X2,...,Xm
(x1, x2, . . . , xm) © ˆmFX1,X2,...,Xm

(x1, x2, . . . , xm)
ˆx1ˆx2 · · · ˆxm

, (2.13)

FX1,X2,...,Xm
(x1, . . . , xm)

=
⁄

x1

≠Œ

⁄
x2

≠Œ
· · ·

⁄
xm

≠Œ
fX1,X2,...,Xm

(z1, z2, . . . , zm) dz1dz2 · · · dzm,

FX1(x1) = FX1,X2,...,Xm
(x1, Œ, . . . , Œ).

Relationship between marginal and joint densities

The following applies, e.g. in the case of three random variables

fX1(x1) =
⁄ Œ

≠Œ

⁄ Œ

≠Œ
fX1,X2,X3(x1, z2, z3) dz2dz3. (2.14)
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Notation: Davidson & MacKinnon (2004) omit the indexing of F and f . With the exception
of this section, this is also done in these documents to simplify the notation if the indexing
can be easily inferred from the context.

Bivariate normal distribution

fX1,X2(x1, x2) = 1
2fi‡1‡2

Ô
1 ≠ fl2 exp

I

≠ 1
2(1 ≠ fl2)

C3
x1 ≠ µ1

‡1

42

≠2fl
x1 ≠ µ1

‡1

x2 ≠ µ2

‡2
+

3
x2 ≠ µ2

‡2

42
DJ (2.15)
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Figure 2.3.: PDF of bivariate normal distribution (R program see section A.1, page 327)

Multivariate normal distribution: see (2.31) in section 2.9.1.
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2.6. Conditional probabilities

2.6. Conditional probabilities

Overview
• Motivation

• Relationship with joint probability

• Basic rule for conditional probabilities

• Relationship with unconditional probabilities

• Conditioning on random variables

• Conditional probability density

• Conditional normal distribution

• Relationship between marginal and conditional density

• Stochastic independence and conditional density / distribution

• Example of motivation: Let the random variable X œ [0, Œ) denote the payout amount
in a lottery. The probability function or distribution function P (X Æ x) = FX(x) gives the
probability for a maximum winning amount of x. It is further known that 2 machines are
available to determine the payout amount, machine A and machine B.

Question: What is the probability of winning the maximum amount of x if machine A is
used?

In other words, what is the probability we are looking for if the condition ”Machine A
in use” holds? Therefore, the probability we are looking for is also called conditional
probability and we write

P (X Æ x|A).

Analogously, if the condition ”Machine B in use” holds, one writes P (X Æ x|B).

• Relationship with joint probability Let E be the event (X Æ x). If someone is only
happy if getting a payo� of at most x from machine B, then this person wants to determine
the probability P (E fl B). This probability is given by the

56



Multiplication rule

For two events E, B from the collection of all possible events F the following applies:

P (E fl B) = P (B)P (E|B), P (B) > 0.

Knowledge about the realisation of B can help to make more precise statements about the
possible realisation of E.

The multiplication rule results from the

Definition of a conditional probability

For two events E, B from the collection of all possible events F , it holds that:

P (E|B) = P (E fl B)
P (B) , P (B) > 0.

Examples:

– B œ E: P (E|B) = 1; E. g. machine B always pays a minimum amount greater
than zero, but a maximum less than x.

– E and B are disjoint: P (E|B) = 0.

Bayes’ theorem

For two events E, B from the collection of all possible events F , it holds that:

P (E|B) = P (B|E)P (E)
P (B) , P (B), P (E) > 0.

• Relationship between the unconditional probability P (X Æ x) and the two conditional
probabilities P (X Æ x|A) and P (X Æ x|B)?

To answer this, we need to know the probability of machine A or machine B being used. If
we denote these probabilities by P (A) and P (B), then we can answer the above question:

Relationship between unconditional and conditional probabilities

P (E) = P (E fl A) + P (E fl B)
P (X Æ x) = P (X Æ x|A)P (A) + P (X Æ x|B)P (B)

FX(x) = FX|machine(x|A)P (A) + FX|machine(x|B)P (B)

(The sample space with the elementary events for the machine choice is � = {A, B}.)

Replacing the event B by the event Ac which is complementary to A, one obtains the
generally applicable
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2.6. Conditional probabilities

Law of total probability

P (E) = P (E fl A) + P (E fl Ac)
P (E) = P (E|A)P (A) + P (E|Ac)P (Ac)

• Condition on random variables: So far, we have defined the condition in the form
of events rather than in the form of random variables. An example of the latter would
be if only one machine is available to determine the payout amount, but its functioning
depends on the previous payout amount Z. Then the conditional distribution function is
FX|Z(x|Z = z), where Z = z means that the condition is that the random variable Z takes
exactly the realisation z. If Z is continuous and Z œ [0, Œ), we have to replace the sum by
an integral and the probability of the condition by the corresponding density function in
order to get the relationship between the unconditional and the conditional probabilities,
since Z can take on infinitely many values. For our example, this then results in:

FX(x) =
⁄ Œ

0
FX|Z(x|Z = z)fZ(z)dz =

⁄ Œ

0
FX|Z(x|z)fZ(z)dz

or in general:

Relationship between unconditional and conditional distribution functions

FX(x) =
⁄

FX|Z(x|Z = z)fZ(z)dz =
⁄

FX|Z(x|z)fZ(z)dz (2.16)

Conditional probability distribution function

for random variable X1 given one random variable X2 or several random variables
X2, . . . , Xm:

fX1|X2(x1|x2) © fX1,X2(x1, x2)
fX2(x2)

, (2.17)

provided that fX2(x2) > 0,

fX1|X2,...,Xm
(x1|x2, . . . , xm) © fX1,...,Xm

(x1, x2, . . . , xm)
fX2,...,Xm

(x2, . . . , xm) , (2.18)

provided that
fX2,...,Xm

(x2, . . . , xm) > 0.

Conditional normal distribution:

Let µ(X) = E[Y |X] and ‡2(X) = V ar(Y |X). Then the following notations are
equivalent:

Y |X ≥ N(µ(x), ‡2(x))

fY |X(y|x) = 1
Ò

2fi‡2(x)
exp

A

≠1
2

(y ≠ µ(x))2

‡2(x)

B
(2.19)
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Important properties:

Calculating the marginal density from the conditional density

fX(x) =
⁄

fX|Z(x|Z = z)fZ(z)dz =
⁄

fX|Z(x|z)fZ(z)dz. (2.20)

Stochastic independence

If

FX1,X2(x1, x2) = FX1,X2(x1, Œ)FX1,X2(Œ, x2) = P (X1 Æ x1) P (X2 Æ x2) (2.21)

holds, the random variables X1 and X2 are called stochastically independent or
independent and it holds that

fX1,X2(x1, x2) = fX1(x1) fX2(x2). (2.22)

Corresponding factorisations hold for more than two random variables. If the random
numbers X1 and X2 are stochastically independent, then it holds that

FX1|X2(x1|x2) = FX1(x1), (2.23a)
fX1|X2(x1|x2) = fX1(x1). (2.23b)

2.7. Expected values and moments

Overview
• Definitions and rules

• Inequalities for expected values

• Second order moments: variance, covariance, correlation

• Rules

• Higher moments: uncentred and centred moments

• Skewness, kurtosis

Expected values, or first moments
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2.7. Expected values and moments

• Expected value of a discrete random variable X with finitely many possible
realisations xi, m < Œ,

E[X] =
mÿ

i=1
xiP (X = xi)

• Expected value of a discrete random variable X with infinitely many realisations
xi

E[X] =
Œÿ

i=1
xiP (X = xi)

Note: This expected value only exists if
Œÿ

i=1
|xi|P (X = xi) < Œ.

• Expected value of a continuous random variable X œ R

E[X] =
⁄ Œ

≠Œ
xf(x)dx

Note: This expected value only exists if
⁄ Œ

≠Œ
|x| f(x)dx < Œ.

• Expected value of a continuous random variable X on support X = (a, b) µ R

E[X] =
⁄

b

a

xf(x)dx

This expected value always exists provided f(x) < Œ for x œ X .

Rules for the expected value

z. B. Wooldridge (2009, Appendix B)

1. For any constant c it holds that
E[c] = c.

2. For all constants a and b and random variables X and Y

E[aX + bY ] = aE[X] + bE[Y ]

holds.

3. • If the random variables X and Y are stochastically independent, it holds that

E[XY ] = E[X]E[Y ]
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• or more generally: If the random variables X and Y are stochastically independent and
it holds for all functions f(x) and g(y) that E [|f(X)|] < Œ and E [|g(Y )|] < Œ, then
it holds that

E[f(X)g(Y )] = E[f(X)]E[g(Y )].

Inequalities for expected values

1. E [|X + Y |] Æ E [|X|] + E [|Y |]

2. Jensen inequality: If g(x) is convex, then E[g(X)] Ø g (E[X]) holds. The inequality
sign holds strictly if g(x) is strictly convex. If g(x) is concave, the inequality sign
reverses.

Second order moments

Variance, covariance, correlation

V ar(X) = E
Ë
(X ≠ E[X])2

È
=

⁄ Œ

≠Œ
(x ≠ E[X])2 f(x)dx,

Cov(X, Y ) = E [(X ≠ E[X]) (Y ≠ E[Y ])]

=
⁄ Œ

≠Œ

⁄ Œ

≠Œ
(x ≠ E[X]) (y ≠ E[Y ]) fX,Y (x, y)dxdy,

Corr(X, Y ) = Cov(X, Y )
Ò

V ar(X)V ar(Y )
. (2.24)

Rules
• V ar(X) = E[(X ≠ E[X])2] = E[X2] ≠ E[X]2 ("Verschiebungssatz"),

• V ar(a + bX) = V ar(bX) = b2V ar(X),

• Cov(X, Y ) = E[(X ≠ E[X])(Y ≠ E[Y ])] = E[X Y ] ≠ E[X] E[Y ]

• Cov(aX, bY ) = ab Cov(X, Y ),

Higher moments

• second (uncentred) moment: m2(X) =
s Œ

≠Œ x2f(x)dx

• Let µ = E[X] = m1(X) and ‡ =
Ò

V ar(X) =
Ò

m̃2(X).

• k-th (uncentred) moment:

mk(X) = E
Ë
Xk

È
=

⁄ Œ

≠Œ
xkf(x)dx
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2.8. Conditional expected values and moments

• k-th centred moment:

m̃k(X) = E
Ë
(X ≠ E(X))k

È
=

⁄ Œ

≠Œ
(x ≠ m1(X))k f(x)dx

• Skewness (third centred moment)

E
Ë
(X ≠ E[X])3

È

‡3 =
s Œ

≠Œ (x ≠ µ)3 f(x)dx

‡3 .

• Kurtosis
E

Ë
(X ≠ E[X])4

È

‡4 =
s Œ

≠Œ (x ≠ µ)4 f(x)dx

‡4 .

Examples:

• The skewness of symmetrical densities is 0.

• The kurtosis of a standard normally distributed random variable is 3.

2.8. Conditional expected values and moments

Overview
• Definitions and rules

• Law of iterated expectations

• Rules for conditional expectations

• Rules

• Rules for conditional variances and covariances

Conditional expected value

• Definition: So far, we have not paid attention to which machine is used in the payout
determination. However, if we are interested in the expected payout when machine A is in
use, then we need to calculate the conditional expected value

E[X|A] =
⁄ Œ

0
xf(x|A)dx.
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This is done simply by replacing the unconditional density f(x) by the conditional density
f(x|A) and specifying the condition in the notation of the expected value. Accordingly the
expected payout for machine B can be calculated as

E[X|B] =
⁄ Œ

0
xf(x|B)dx.

If it is not yet “realised” which M = A, B is in use, the conditional expected value

E[X|M ] =
⁄ Œ

0
xf(x|M)dx = g(M)

is a function with argument M . Thus the conditional expected value is a random
variable. This holds in general.

Depending on whether the condition or X are continuous or discrete, the calculation of
the conditional expected value di�ers slightly

X = continuous discrete Condition

E[X|A] =
s

xf(x|A)dx
q

xiP (X = xi|A) discrete
E[X|Z = z] =

s
xf(x|Z = z)dx

q
xiP (X = xi|z) continuous

Note: Often the short forms are used, as in Wooldridge (2009), e. g.

E[X|z] =
⁄

xf(x|z)dx.

• Law of iterated expectations (LIE): Corresponding to the relationship between
unconditional and conditional probabilities, a similar relationship also exists between the
unconditional and the conditional expected values. It is

E[X] = E [E(X|Z)] = E [g(Z)] , g(Z) = E(X|Z)

and is called law of iterated expectations.

Proof sketch:

E[X] =
⁄

xf(x)dx

=
⁄

x
5⁄

f(x|z)f(z)dz
6

dx (Substituting (2.20))

=
⁄ ⁄

xf(x|z)f(z)dzdx

=
⁄ ⁄

xf(x|z)dx
¸ ˚˙ ˝

E[X|z]

f(z)dz (Interchanging dx and dz)

=
⁄

E[X|z]f(z)dz

=E [E(X|Z)] .
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2.8. Conditional expected values and moments

In our example with the 2 machines the law of iterated expectations yields

E[X] = E[X|A]P (A) + E[X|B]P (B), (2.25)
E[X] = g(A)P (A) + g(B)P (B).

This example makes it clear once again that the conditional expected values E[X|A] and
E[X|B] are random numbers that, weighted with their probabilities of occurrence P (A)
and P (B), yield the expected value E[X]. Imagine that before the game starts you only
know the two conditional expected values, but not which machine will be used. Then the
expected payout is just E[X] and we have to consider the two conditional expected values
as random variables. Once we know which machine has been used, the corresponding
conditional expected value is the realisation of the random variable.

Rules for conditional expectations

(e. g. Wooldridge (2009, Appendix B))

1. For each function c(·) it holds that

E[c(X)|X] = c(X).

2. For all functions a(·) and b(·) it holds that

E[a(X)Y + b(X)|X] = a(X)E[Y |X] + b(X).

3. If the random variables X and Y are independent, it holds that

E[Y |X] = E[Y ].

4. Law of iterated expectations (LIE)

E[Y ] = E[E(Y |X)]
E[Y |X] = E[E(Y |X, Z)|X]

5. If E[Y 2] < Œ, E[g(X)2] < Œ for an arbitrary function g(·), then:

E
Ó
[Y ≠ E(Y |X)]2 |X

Ô
Æ E

Ó
[Y ≠ g(X)]2 |X

Ô

E
Ó
[Y ≠ E(Y |X)]2

Ô
Æ E

Ó
[Y ≠ g(X)]2

Ô
.

Rules for conditional variances and covariances
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"Verschiebungssatz" for (co-)variances, etc.

V ar(Y |X) = E[(Y ≠ E[Y |X])2|X] = E[Y 2|X] ≠ E[Y |X]2, (2.26)
Cov(Y, X|Z) = E[(Y ≠ E[Y |Z])(X ≠ E[X|Z])|Z]

= E[Y X|Z] ≠ E[Y |Z] E[X|Z], (2.27)
V ar(Y ) = E [V ar(Y |X)] + V ar (E[Y |X]) . (2.28)

A proof for (2.28) can be found for the multivariate variant (9.6).

Relationships between conditional expectations and covariances

It holds for two random variables Y and X:

E[Y |X] = E[Y ] =∆ Cov(Y, X) = 0, (2.29a)
E[Y |X] = 0 =∆ E[Y ] = 0 and Cov(Y, X) = 0, (2.29b)

Cov(Y, X) ”= 0 =∆ E[Y |X] ”= 0, (2.29c)
Cov(Y, X) = 0 & E[Y ] = 0 =∆ E[Y X] = E[XE(Y |X)] = 0, (2.29d)

E[Y ] = 0 ”=∆ E[Y |X] = 0, (2.29e)
Cov(Y, X) = 0 ”=∆ E[Y |X] = 0. (2.29f)

Example: For Y = X2 and E(X) = E(X3) = 0 it holds that Cov(Y, X) = 0,
since Cov(X2, X) = E[X3] ≠ E[X2]E[X] = 0, but E[Y |X] = X2 ”= 0.

Evidence via

Cov(Y, X) = E[Y X] ≠ E[Y ]E[X] = E [E[Y X|X]] ≠ E [E[Y |X]] E[X]
= E [XE[Y |X]] ≠ E [E[Y |X]] E[X]

• (2.29b): If E[Y |X] = 0, it must follow that Cov(Y, X) = 0.

• (2.29c): If this statement were false and E[Y |X] = 0 followed, Cov(Y, X) = 0 follows from
(2.29b), which leads to a contradiction.

• (2.29f): From Cov(Y, X) = 0 only E [wE[Y |X]] = E [E[Y |X]] E[X] follows, but not
E[Y |X] = 0.

2.9. Important probability distributions
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2.9. Important probability distributions

Overview
• Normal distribution

• ‰2, t-, F -distribution

• ˘ Change of variables

2.9.1. Normal distribution

Overview
• Standard normal distribution

• Normal distribution

• Multivariate standard normal distribution

• Multivariate normal distribution

• Bivariate normal distribution

• Linear combinations of multivariate normally distributed random vectors

• IID and NID

• Standard normal distribution: x ≥ N(0, 1) with density function (2.5)

„(z) = 1Ô
2fi

exp
3

≠1
2z2

4
. (2.5)

• Normal distribution: x ≥ N(µ, ‡2) with density

f(x) = 1Ô
‡22fi

exp
A

≠1
2

(x ≠ µ)2

‡2

B

= 1
‡

„
3

x ≠ µ

‡

4
. (2.6)

Note: (2.6) can be derived using change of variables in the one-dimensional case (2.39).

• Multivariate standard normal distribution: z ≥ N(0, In) with density

„(z) = 1
(2fi)n/2 exp

3
≠1

2zT z
4

. (2.30)

Note that this representation is equivalent to (cf. (2.22))

„(z) = „(z1)„(z2) · · · „(zn).

A multivariate standard normally distributed random vector z is thus composed of indepen-
dently and identically distributed (more precisely standard normally distributed) random

66



variables z1, . . . , zn. Conversely: n i.i.d. standard normally distributed random numbers
can be written as a multivariate standard normally distributed random vector. Note: This
does not work without the i.i.d. requirement!

• Multivariate normal distribution:

x = Az + µ ≥ N(µ, �), where � = AAT (2.31)

and for the (r ◊ n) matrix A, r Æ n, rk(A) = r holds. Density function:

f(x1, x2, . . . , xr) = f(x) = 1
(2fi)r/2 (det(�))≠1/2 exp

3
≠1

2 (x ≠ µ)T �≠1 (x ≠ µ)
4

. (2.32)

• Bivariate normal distribution (2.15). See section 2.5 for plot.

f(x1, x2) = 1
2fi‡1‡2

Ô
1 ≠ fl2

exp
I

≠ 1
2(1 ≠ fl2)

C3
x1 ≠ µ1

‡1

42
≠ 2fl

x1 ≠ µ1

‡1

x2 ≠ µ2

‡2
+

3
x2 ≠ µ2

‡2

42
DJ

• Linear combinations of multivariate normally distributed random vectors

For w = b + Bx with x ≥ N(µ, �) it holds that :
w ≥ N

1
b + Bµ, B�BT

2
. (2.33)

• Notation

– The random variables vt, t = 1, . . . , n are independently and identically distributed
(IID):

vt ≥ IID(E[vt], V ar(vt)).

– The random variables vt, t = 1, . . . , n are independently and identically normally
distributed (NID):

vt ≥ NID(E(vt), V ar(vt)).

In matrix notation and using µv = E[vt], ‡2
v

= V ar(vt), this corresponds to
Q

cccca

v1
v2
...

vn

R

ddddb
≥ N

Q

cccca

Q

cccca

µv

µv

...
µv

R

ddddb
,

Q

cccca

‡2
v

0 · · · 0
0 ‡2

v
· · · 0

... ... . . . ...
0 0 · · · ‡2

v

R

ddddb

R

ddddb
,

v ≥ N(µvÿ, ‡2
v
I).

Cf. for the definition of ÿ (7.8).
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2.9. Important probability distributions

2.9.2. ‰2-, t-, F -distribution

Overview
• ‰2-distribution

• Student’s t-distribution

• F -distribution

‰2-distribution

• If z1, . . . , zm are i.i.d. standard normally distributed, z ≥ N(0, Im), then the sum of the
squared random variables

y =
mÿ

i=1
z2

i
= zT z = ||z||2

is ‰2-distributed with m degrees of freedom. In short form:

y ≥ ‰2(m).

• Expected value: E(y) = m,

since E

A
mÿ

i=1
z2

i

B

=
mÿ

i=1
E(z2

i
) = m.

• Variance: V ar(y) = 2m, since

E
Ë
(y ≠ m)2

È Independence= mV ar(z2
i
)

= mE
51

z2
i

≠ 1
22

6

= m
1
E[z4

i
] ≠ 2 + 1

2

= 2m.

• If y1 = q
m1
i=1 z2

i
≥ ‰2(m1) and y2 = q

m

i=m1+1 z2
i

≥ ‰2(m2), m = m1 + m2, are independent,
it holds that

y = y1 + y2 ≥ ‰2(m).

• If x is a multivariate normal distributed (m ◊ 1) vector with nonsingular covariance matrix
�, x ≥ N(0, �), then

y = xT �≠1x ≥ ‰2(m). (2.34)
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Proof : Since � is regular, there exists a decomposition � = AAT such that z = A≠1x
has covariance matrix I. Then z ≥ N(0, I) and

E
5
A≠1xxT

1
A≠1

2
T

6
= A≠1�

1
A≠1

2
T

= A≠1AAT
1
AT

2≠1
= I.

• If P is a projection matrix with rk P = r < m and z ≥ N(0, I), it holds that

zT Pz ≥ ‰2(r). (2.35)

Proof : Assume P projects onto the r linearly independent columns of the (m ◊ r) matrix
Z. Then P = Z(ZT Z)≠1ZT and one obtains

zT Pz = zT Z¸ ˚˙ ˝
wT

1
ZT Z

2≠1

¸ ˚˙ ˝
inverse covariance matrix with rank r

ZT z¸ ˚˙ ˝
w

.

Since for the (r ◊ 1) vector w ≥ N
1
0, ZT Z

2
holds, it holds that

wT
1
ZT Z

2≠1
w ≥ ‰2(r)

because of (2.34).

• For m æ Œ it holds that a ‰2(m)-distributed random variable converges in distribution to
a normally distributed random variable N(m, 2m).

Student’s t-distribution

• Given a standard normally distributed random variable z ≥ N(0, 1) and a ‰2-distributed
random variable y ≥ ‰2(m) with m degrees of freedom, where z and y are stochastically
independent. Then the random variable

t = z

(y/m)1/2 ≥ t(m) (2.36)

is t-distributed with m degrees of freedom.

• The density of the t-distribution is symmetrical and bell-shaped.

• All moments of the t-distribution exist up to the m ≠ 1 moment. The t-distribution with
m = 1 is also called Cauchy distribution. Note that neither expected value nor variance
exist because too much mass of the distribution concentrates in the tails.

• Expected value: For m > 1: E(t) = 0, Variance: For m > 2: V ar(t) = m/(m ≠ 2).

• The t-distribution approaches the standard normal distribution with increasing number
of degrees of freedom. One can argue asymptotically here: With m æ Œ it holds that
plim

mæŒy/m = 1, since y is a sum of m squared independent standard normal distributed
random variables. Thus, using Slutsky’s theorem, plim

mæŒ(y/m)1/2 = 1 also holds and
thus

plim
mæŒ

z

(y/m)1/2 = z ≥ N(0, 1).
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2.9. Important probability distributions

F -distribution

• Given two stochastically independent ‰2-distributed random variables y1 ≥ ‰2(m1) and
y2 ≥ ‰2(m2). Then the random variable

F = y1/m1

y2/m2
≥ F (m1, m2) (2.37)

follows a F -distribution with m1 and m2 degrees of freedom.

• For m2 æ Œ, the random variable m1F approaches a ‰2(m1)-distribution, since
plim

m2æŒ y2/m2 = 1. If t ≥ t(m2), it holds that t2 ≥ F (1, m2).

2.9.3. Supplement: Change of variables

Change of variables

• ˘ Change of variables in the one-dimensional case: Given is a continuous random
variable X œ R with density function fX(x) > 0.

Let there also be given a random variable Y = g(X), where the function g(·) is continuous
and invertible, such that

x = g≠1(y). (2.38)

Furthermore, let g(·) and g≠1(·) be di�erentiable once.

Then for the random variable Y , the density function fY (y) can be calculated through

fY (y) =
-----

d

dy
g≠1(y)

----- fX

1
g≠1(y)

2
(2.39)

(Casella & Berger 2002, Theorem 2.1.5).

• ˘ Change of variables in the multi-dimensional case: Given a continouos (m ◊ 1)
random vector x œ X µ Rm with density function fx(x) > 0. Further, let an (m ◊ 1)
random vector

y = g(x) = a + Ax (2.40)
be given.

If A is invertible (see Casella & Berger (2002, Section 4.6, p. 185) for conditions for the
case that g(x) in (2.40) is nonlinear), it holds that

x = h(y) = A≠1(y ≠ a)

and (see section 6.2.2)

ˆx
ˆyT

= ˆh(y)
ˆyT

= A≠1.
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Then, for the random vector y, the density function fy(y) can be calculated through

fy(y) =
-----
ˆh(y)
ˆyT

----- fx (h(y)) =
---A≠1

--- fx

1
A≠1(y ≠ a)

2
, (2.41)

where
---ˆh(y)

ˆyT

--- denotes the determinant of the Jacobian matrix ˆh(y)
ˆyT , see (1.10) for more

details. (Davidson 2000, Theorem B.9.2)
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3. Convergence and limits

Convergences occur in many areas of mathematics without it being clear in applied use that
the constructs are limit processes. Consider the function f(x) = x2. The derivative function
is f Õ(x) = 2x, simply "‘derived’" by algebraic formulae. But the actual process of taking the
derivative would look like this:

Example: Derivative of a simple function f(x) = x2:

f Õ(x) : = lim
hæ0

f(x + h) ≠ f(x)
h

= lim
hæ0

(x + h)2 ≠ x2

h

= lim
hæ0

2xh + h2

h
= lim

hæ0

2xh

h
+ lim

hæ0

h2

h
= 2x + 0 = 2x

No matter whether derivative, integral, continuity or sequences of functions, limit values occur
in very di�erent forms. In order to understand the "‘new"’ forms of convergence that are
important for econometrics, we will briefly review the standard cases.
In mathematics and probability theory, there are several types of convergence, of which we
will discuss the following:

Overview: types of convergence

1. Convergence of sequences of numbers - basic framework of all theories of convergence.

2. Convergence of sequences of functions

3. Convergence of sequences of random variables

• Almost sure convergence

• Convergence in probability

• Convergence in distribution

For econometrics, 3) with its forms is particularly relevant. To understand them, one must
understand 1) and 2)



3.1. Convergence of sequences

Let (an) be a sequence of real numbers, i. e., a mapping f : N æ R with n ‘æ an œ R (imagine
an := 1

n
). Instead of f(n) = an one also often writes (an) = (an)nœN = {a1, a2, a3, ...} for the

set of members of the sequence.

Examples:

f(n) = (an)nœN = ( 1
n
)nœN = {1, 1

2 , 1
3 , 1

4 , . . .}.

f(n) = (an)nœN = (n2)nœN = {1, 4, 9, 16, . . .}.

f(n) = an = f(x+1/n)≠f(x)
1/n

h:=1/n= f(x+h)≠f(x)
h

für fixed x.

Convergent sequence

A sequence (an) is called convergent in R, if there exists a number a œ R, with the
following property

• For all ‘ > 0, there is a member of the sequence indexed by N œ N (more precisely
N(‘), since it depends on ‘), such that | an ≠ a |< ‘ holds for all subsequent members
of the sequence n > N .

The number a is called limit of the sequence and one writes

lim
næŒ

an = a or an æ a for n æ Œ

Note: In the case of convergence, the limit of the sequence is uniquely determined!

Example: f(n) := (an) := 50
n

· | sin(0.1 · n) |. The members of the sequence are
plotted as circles in Figure 3.1. One now thinks that the limit is a = aŒ = 0.
To show this, one must prove for all ‘ > 0 that there is a member of the sequence
N(‘) from which all further members of the sequence are within the ‘-distance
from a.
If we now imagine a ‘1 = 1, we see that the members of the sequence 26 to 43
already have a distance of less than 1 from aŒ, but the members of the sequence 44
to 50 are outside this range. One now chooses a N(‘1) = 51 (or a higher member
of the sequence) and hopes that all subsequent ones lie within this distance of the
limit and could continue this with further, smaller ‘i. However, this does not show
the convergence of the sequence! The definition clearly says "‘for all"’ ‘ > 0!
A proof would look as follows:
Since one has to show that it holds for all ‘, one gives oneself a small ‘ > 0, which
can become arbitrarily small, but is fixed for a moment. Now one has to show
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3.1. Convergence of sequences

Figure 3.1.: The first 100 members of the sequence of 50
n

· | sin(0.1 · n) |

that there is a member of the sequence N(‘) depending on the ‘ just given, from
which all further members of the sequence an with n > N(‘) lie in the ‘-distance
of aŒ = 0. So the task is to find this N(‘) such that it holds that:

| aN(‘) ≠ 0 |< ‘

Rearranging the condition gives the desired result:

| aN |< ‘ ≈∆ 50
N

· | sin(0.1 · N) |
¸ ˚˙ ˝

Æ1

< ‘ ≈∆ 50
N

< ‘ ≈∆ N >
50
‘

Now, given a ‘, we know that all members of the sequence with index greater than
50
‘

lie in the ‘ region around the limit.
A proof would now look like this:
Let ‘ > 0 be arbitrarily small but fixed.
Then choose the index of sequence N(‘) such that on the one hand N(‘) > 50

‘
and

N(‘) œ N.
Thus, for the following members of the sequence with index n Ø N(‘) it holds
that:

| an ≠ a | a=0= | an ≠ 0 | Def.= | 50
n

· sin(0.1 · n) | = | 50
n

| · | sin(0.1 · n) |
|sin(0.1·n)|Æ1

Æ | 50
n

|
nØN(‘)

Æ | 50
N(‘) |

N(‘)> 50
‘

< | 50
50
‘

| = | ‘ | ‘>0= ‘

Altogether one has thus shown:
For arbitrary ‘ > 0 there is an N(‘) œ N, such that for all subsequent members of
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the sequence with index n Ø N(‘) it holds that:

| an ≠ a |< ‘

Calculation rules of convergent sequences of numbers xn, yn:

• If limnæŒ xn = x and limnæŒ yn = y, then it also follows:
limnæŒ xn + limnæŒ yn = limnæŒ (xn + yn).

• If limnæŒ xn = x and limnæŒ yn = y, then it also follows:
limnæŒ xn · limnæŒ yn = limnæŒ (xn · yn).

• If limnæŒ xn = x and limnæŒ yn = y and y ”= 0, then:
limnæŒ xn/ limnæŒ yn = limnæŒ (xn/yn).

Note: The inversions do not generally apply : Since 0 = (≠1)n + (≠1)n+1, it does not follow
from limnæŒ 0 = 0 that the limits limnæŒ (≠1)n and limnæŒ (≠1)n+1 exist, which is clearly
not the case.

3.2. Convergence of functions

While previously defining a scalar sequence, one now goes a step further and considers sequences
or families of functions fn(x) (think of fn(x) = x + 1

n
).

For every fixed n œ N, the expression fn(x) is a function fn(x) : D æ R, where D is the domain
of definition of the function, and for every fixed x0 œ D, the expression fn(x0) is a sequence
N æ R. One now defines the (pointwise - as opposed to the uniform -) convergence of a
sequence of functions as the limit of the sequence fn(x0) for fixed x0:

Pointwise convergence

A sequence of functions (fn(x)) is called pointwise convergent if for every fixed point
x0 œ D the sequence of numbers (fn(x0))nœN converges.

By
f(x) := lim

næŒ
fn(x)

then a function f : D æ R is defined. Properties of fn such as continuity, integrability,
di�erentiability, i.e. properties that also require limit values, do not transfer in general!
(hence the term uniform convergence).
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3.2. Convergence of functions

Example: fn(x) := xn with domain of definition D = [0, 1]. Some of the elements
of the family of sequences can be seen in figure 3.2. Since for all n œ N and a
number x œ (0, 1) just xn < x holds, but 1n = 1, it is clear that the limit of the
sequence of functions fn(x) drawn in red looks like this

f(x) =

Y
]

[
0 falls x < 1
1 falls x = 1

This is proved again with the ‘≠N -definition for sequences of numbers from above,
doing this for "‘each"’ x œ D = [0, 1] individually. But here it reduces to a case
di�erentiation of x œ [0, 1) and x = 1. What is striking here is that each member
of the sequence fn(x) represents a continuous function, while the limit has a point
of discontinuity at point 1.

Figure 3.2.: Three members of the sequence of the family of functions fn(x) = xn
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3.3. Almost sure convergence

If one considers random variables as functions to R for which there is a probability function
for evaluation, one can form a special pointwise convergence for random variables, the almost
sure convergence. Let Xn(Ê) be a sequence of random variables. Xn(Ê) converges almost
surely to X(w), in symbols Xn

a.s.≠æ X (almost surely), if the probability of the set of outcomes
Ê at which limnæŒ Xn and X di�er is 0. In formal notation:

Xn

a.s.≠æ X ≈∆ P
3

lim
næŒ

Xn = X
4

= P
3

{Ê œ � | lim
næŒ

Xn(Ê) = X(Ê)}
4

= 1

≈∆ P
3

{Ê œ � | lim
næŒ

Xn(Ê) ”= X(Ê)}
4

= 0

Figure 3.3.: Three members of the sequence of random variables with n1 < n2 < n3

While pointwise convergence required that for every x œ R limnæŒ fn(x) = f(x) must hold,
probability gives us the possibility to require that the limit of the sequence and the limit di�er
"‘by probability 0"’. Thus, one first lets the sequence tend to infinity and then considers the
probability at which the two di�er. If we look at the member of the sequence Xn1(Ê) in the
picture on the right, it di�ers from X(Ê) in every Ê, and since P (�) = 1 this is not yet an
approximation. If we take a subsequent member of the sequence Xn2(Ê), Xn2(Ê) and X(Ê)
di�er only in A fi B with probability P (A fi B) = p < 1 and Xn3(Ê) and X(Ê) di�er only in
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3.4. Convergence in probability

{Ê1, Ê2}.
Supposing that X is a continuous random variable, thus � has uncountably many elements,
then the probability is P ({Ê1, Ê2}) = P ({Ê1}) + P ({Ê2}) = 0 and (the limit) Xn3(Ê) and
X(Ê) di�er in a set {Ê œ � | Xn3(Ê) ”= X(Ê)} with probability 0. We say that they are almost
everywhere the same or that the so sketched sequence Xn(Ê) almost surely converges to X(Ê).

Calculation rules of almost surely convergent sequences of random variables
Xn, Yn:

• If Xn

a.s.≠æ X and Yn

a.s.≠æ Y , then it also follows that: Xn + Yn

a.s.≠æ X + Y .

• If Xn

a.s.≠æ X and Yn

a.s.≠æ Y , then it also follows that: Xn · Yn

a.s.≠æ X · Y .

Remark: Addition and multiplication preserve almost sure convergence.

3.4. Convergence in probability

2nd idea: instead of considering the likelihood of the limit, consider the limit of the likelihood
of the di�erences.

Convergence in probability

Let Xn(Ê) be a sequence of random variables. Xn converges in probability to X, in
symbols Xn

P≠æ X (in probability), if for all ‘ > 0 it holds that

lim
næŒ

pn := lim
næŒ

P (|Xn ≠ X|R > ‘) = 0

≈∆ lim
næŒ

P ({Ê œ � | |Xn(Ê) ≠ X(Ê)|R > ‘) = 0

Whereas previously one first formed the limit of the sequence of random variables and then
evaluated the di�erences to the limit with the probability, one now proceeds di�erently.
For each member of the sequence Xn(Ê) and for each ‘ one can calculate the probability
pn := P ({Ê œ � | |Xn(Ê) ≠ X(Ê)| > ‘}) and thus get a sequence of numbers pn on [0, 1]. If
this sequence of numbers goes towards 0, Xn lies with probability 1 in a ‘ neighbourhood
around X and Xn is said to converge in probability towards X, in symbols Xn

P≠æ X or
plim

næŒ Xn = X. Expressed formally:
A sequence of random variables Xn converges in probability to X if for all ‘ > 0 it holds that

lim
næŒ

pn := lim
næŒ

P (|Xn ≠ X|R > ‘) = lim
næŒ

P ({Ê œ � | |Xn(Ê) ≠ X(Ê)|R > ‘) = 0

If we consider figure 3.4 with two members of the sequence and two di�erent ‘, this no longer
makes a statement about the identity of two random variables. It only makes a statement
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Figure 3.4.: Two members of the sequence of random variables with n1 < n2

that if you want to know it more precisely (make ‘ smaller), you will find a member of the
sequence such that the probability of outcomes Ê where the distance is greater than ‘ is 0.
In the example Xn1(Ê) and ‘1 it is just the set A fi B in which Xn1(Ê) di�ered from X(Ê)
by more than ‘1. One could now use Xn2(Ê) with the same ‘1; since Xn2(Ê) is in the ‘1
neighbourhood, the probability of outcomes outside is 0.
If one now narrows the neighbourhood to ‘2, Xn2(Ê) and X(Ê) di�er only in C. If the set
C has probability 0, one would not have to find a new index, if the probability is not 0, one
would again find a subsequent member of the sequence, from which the set of "‘outliers"’ has
probability 0.

Calculation rules of random variable sequences Xn, Yn converging in probability:

• If Xn

P≠æ X and Yn

P≠æ Y , then it also follows that: Xn + Yn

P≠æ X + Y .

• If Xn

P≠æ X and Yn

P≠æ Y , then it also follows that: Xn · Yn

P≠æ X · Y .

Remark: Addition and multiplication preserve convergence in probability.

Convergence in probability for random vectors

Let yn denote a (n ◊ 1) random vector whose dimension varies with n.
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3.5. Convergence in distribution

A vector function an : Rn æ Rm : an := a(yn) converges in probability to a0 œ Rm if

lim
næŒ

P (||a(yn) ≠ a0||Rm < ‘) = 1.

Remark: || · ||Rm : Rm æ R (cf. definition from above).

Example: µ̂ : Rn æ R : µ̂(yn) = 1
n

q
n

t=1 yt. So here m = 1. For —̂, the OLS
estimator with k regressors, m = k.

Rules of calculation for random vectors converging in probability

Let {xn} and {yn} be sequences of random vectors. If plim
næŒ xn, and plim

næŒ yn,
then it holds that:

plim
næŒ

(xn ± yn) = plim
næŒ

xn ± plim
næŒ

yn, (3.1a)

plim
næŒ

(xT

n
yn) = (plim

næŒ
xn)T (plim

næŒ
yn), (3.1b)

These rules also apply if the random vectors are replaced by matrices with random variables
with corresponding properties.

3.5. Convergence in distribution

3rd idea: Instead of considering the random variables as functions, consider only the distribution
functions of the random variables.

Convergence in distribution

Let Xn(Ê) be a sequence of random variables. Xn converges in distribution to X, in
symbols Xn

d≠æ X (in distribution), if for the sequence of functions of the distributions
Fn of Xn and the distribution F of X it holds that

lim
næŒ

Fn = F pointwise

Example: Let {Xn} be the sequence of random variables defined above. Recall
that: Xn

P≠æ X, where X ≥ N(µ, ‡2). Let Z be a normally distributed random
variable with expected value µ and variance ‡2. Then it holds that Xn

d≠æ Z.
Thus X and Z have the same distribution, but are di�erent random variables!

Relation between the concepts of convergence

Xn

ptw.≠æ X =∆ Xn

a.s≠æ X =∆ Xn

P≠æ X =∆ Xn

d≠æ X. (3.2)

(For an example of why the inversion of the third sequence arrow does not hold, see the
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BA Time Series Econometrics module, section 5.1.4., for an example of the inversion of
the second sequence arrow, see the sliding hills example.)

Continuous Mapping Theorem (CMT)

• Let h(·) be a continuous function.

If Xn

a.s.≠æ X, then h(Xn) a.s.≠æ h(X) holds.
If Xn

p≠æ X, then h(Xn) p≠æ h(X) holds.

If Xn

d≠æ X, then h(Xn) d≠æ h(X) holds.

Remark: Continuous transformations preserve the convergence concepts.

• Accordingsly, for sequences of (k ◊ 1) random vectors xn it holds that:
Given a continuous vector-valued function h : Rk æ Rm, then for ı œ {a.s., p, d} it
holds that:

If xn

ı≠æ x, then h(xn) ı≠æ h(x) holds. (3.3)

(Cf. e. g. Vaart (1998, Theorem 3.2).)

For clarification, consider the function

f(x) =

Y
]

[
0 x < 2
1 x Ø 2

and the sequence of numbers an = 2 ≠ 1
n
. Then obviously limnæŒ an = 2 is monotonic from

the left. We now quickly see that the limit of the function values is not equal to the function
value of the limit:

lim
næŒ

f(an) an<2’n= lim
næŒ

0 = 0 ”= 1 = f(2) = f( lim
næŒ

an)

So far it has not been investigated in which way convergence in distribution is preserved, very
famous is the following theorem:

Slutzky’s theorem

Let xn

d≠æ x and yn

p≠æ c with c œ Rp constant. Then it holds that

yT

n
xn

d≠æ cT x. (3.4)

Vgl. Vaart (1998, Theorem 3.6).

The theorem also holds if y and c are replaced by appropriately dimensioned matrices.
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3.6. Example of sliding hills: convergence in probability ”∆ Almost sure convergence

Note: The term Slutzky’s theorem is not used consistently in the statistical and econometric
literature. In his theorem 3.1.3, Davidson (2000) denotes the statement (3.3) for scalars and
convergence in probability as Slutzky’s theorem.

Conclusion:
• Convergence terms that measure di�erent "‘distances"’ properties of (random) variables

(and their interrelationships within and among them).

• For econometric statements, generally only the two "‘last"’ ones, convergence in proba-
bility and in distribution, are interesting

• For a better understanding of econometric theory, one also needs knowledge of the
other convergence terms.

3.6. Example of sliding hills: convergence in probability ”∆ Almost sure
convergence

Considering initially for simplicity the doubly indexed random variable sequence Xnk on

� = [0, 1], where n, k œ N , k Æ n and I[a,b](Ê) :=

Y
]

[
1 if Ê œ [a, b]
0 if Ê ”œ [a, b]

,

X11 = I[0,1]

X21 = I[0,1/2] X22 = I[1/2,1]

X31 = I[0,1/3] X32 = I[1/3,2/3] X33 = I[2/3,1]

...

one quickly recognises their structure. The graphs of these random variables are "‘sliding
hills’" which become narrower and narrower as n increases (n is the number of intervals in
which one subdivides the unit interval, k is the interval in which one is located). According to
the lexicographic order, one can generate a random variable Yn from Xnk:

Y1 = X11, Y2 = X21, Y3 = X22, Y4 = X31, Y5 = X32, ...

Thus one recognises:

• Yn converges in probability to 0,

because for an arbitrary ‘ œ (0, 1) it holds that P (|Xnk ≠ 0| > ‘) = P (Xnk > ‘)
n equal intervals

˙˝¸˚= 1
n

næŒ≠æ
0
(in words: the probability of being on a hill goes towards 0)

• Yn does not converge almost surely to 0, because the random variable sequence Yn does not
converge pointwise at any point (if it does not converge pointwise anywhere, then trivially
it does not converge almost surely either, since in this case the set of all outliers have
probability 0):
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To be shown: for all Ê œ � there exists ‘ > 0 such that for all N œ N there exists an n > N
with |Yn ≠ 0| = Yn > ‘.
Let Ê œ � be fixed but arbitrary, ‘ = 0.5, N œ N be fixed but arbitrary and without
restriction YN (Ê) = 0. Let YN = XnÕkÕ and without restriction Ê = k

ı

nı ”œ [kÕ/nÕ, (kÕ + 1)/nÕ]
(if irrational, use a rational approximation; if kı = 1 or kı = nı, trivial). Then Ê lies
in any interval [Ê ≠ 1/r, Ê + 1/r] = [ rk

ı≠n
ı

rnı , rk
ı+n

ı

rnı ] for arbitrary r œ N. Now choose r
by Archimedean property such that on the one hand rnı > nÕ and on the other hand
[Ê ≠ 1/r, Ê + 1/r] µ [0, 1]. Define k̃ = rkı ≠ nı œ N (because of "‘on the other hand"’),
then Yn̂(Ê) := X

rnı,k̃
(Ê) = 1 > ‘ = 0.5 for n̂ > N .

See, for example, Casella & Berger (2002, Example 5.5.8, p. 234-5).
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Part II.

Econometric Methods



4. Introduction

Aim of this course:
To learn the basic econometric theory and practice relevant to the careful empirical
analysis of economic problems.

Examples of economic questions requiring empirical analysis:

• Does a reduction in class size (school, uni-
versity) lead to better learning outcomes?
(Cf. Stock & Watson 2007, Section 1.1.)

• E�ect of training measures by the Federal
Employment O�ce: Does this increase
the remaining lifetime income? Does it
reduce the duration of unemployment?

• Will there be higher inflation in the com-
ing years?

• What factors influence country-specific
imports into Germany?

• Understanding dynamic processes

• What factors influence the length and in-
tensity of business cycles?

• What factors influence economic growth,
income and wealth distribution?

In the examples given, it is often a matter of determining causal variables.

4.1. Statements about causal relationships

The knowledge of causal relationships is a prerequisite for the evaluation of planned or
implemented (economic policy, operational, etc.) measures.

Causality

• Common understanding: “causality means that a specific action leads to a specific,
measurable consequence (Stock & Watson 2007, p. 8)

• Considered precisely: The e�ect of an action is always unknown in the individual case,



because

– if individual/unit/variable i is a�ected by an action/measure, one can only observe
the outcome with the action for i, but not the outcome if the action had not been
carried out.

– Alternatively, if individual/unit/variable i is not a�ected by this action, one only
knows the result without action, but not the result for this i if it had been a�ected
by the action.

The case that did not occur in each case is the counterfactual state and would
provide the answer to a “what if¿‘ question.

In the language of econometrics: the individual success of a measure is always
unobservable because it always contains a counterfactual.

• Under certain conditions, however, the average e�ect of an action on a group of
individuals can be measured.

• Definition of causality: In the following, we refer to an action or measure as
causal if a causal e�ect of an action can be measured.

A “causal e�ect is defined to be an e�ect on an outcome of a given action or treatment,
as measured in an ideal randomized controlled experiment (Stock & Watson 2007,
p. 9)”.

• Ceteris paribus: If all other causal variables except the variable of interest are held
constant and only the action of interest is performed, one considers the outcome of the
action ceteris paribus (c. p.).

• Note: For the existence of a causal e�ect, it is a prerequisite that an action also has an
e�ect on single individuals.

Measurability of causal relationships

A quantification of the average e�ect of an action, i.e. the quantification of a
causal relationship on the basis of an econometric model is only possible if

1. an ideal controlled random experiment can be performed or if

2. a sample from a quasi-experiment is available and specific identification assump-
tions are made or if

3. the econometric model was derived from a causally interpretable (economic) model
that is a useful approximation of reality for the research question.

In this course we only consider case 3

Cases 1. and 2. are described in more detail in sections 2.2 and 2.3 in Advanced Issues in
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4.1. Statements about causal relationships

Econometrics and are dealt with in detail in the master’s course Impact Evaluation
Methods. They play a major role in evaluation research.

Controlled random experiment

A total group of individuals is divided into a treatment group and a control group.
The latter contains all individuals who do not participate in a measure. The central
feature of a controlled random experiment is that the participants of the treatment
group are selected randomly.

Example: class size At the beginning of a school year, students (and teachers,
etc.) of a school are randomly divided into small and large classes. This avoids
that students with certain characteristics are predominantly found in one class
size.

Quasi-Experiment / Natural Experiment

Often it is not possible to conduct a controlled random experiment for legal, ethical,
economic or other reasons.

Under certain additional assumptions on the population, sample observations obtained
from them can be treated as if a controlled random experiment were present.

Note: For many economic questions, e. g. macroeconomic questions, neither controlled
random experiments are feasible nor can natural experiments be observed. Then the causal
interpretation of an econometric model can only be done on the basis of an economic model
underlying the econometric model.

Simultaneity and Causality

If one observes two variables y and x in the same time period, e. g. for the year 2014, then
it is possible that

1. both variables show a simultaneous relationship, i. e. influence each other simulta-
neously,

x Ωæ y

or

2. one variable is causal for the other, e. g. x for y,

x ≠æ y

or
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3. both variables are influenced by a third variable but do not influence each other

z ≠æ

Y
]

[
x

y
, x ”≠æ y, y ”≠æ x

or

4. no influence exists
x ”Ωæ y.

Note:

• In principle, in an empirical analysis with several potential variables in one time period, one
must assume that simultaneity, i. e. case 1, is present. Only a theoretically or statistically
justified exclusion of a direction of an e�ect makes it possible to exclude simultaneity and
to obtain case 2, precisely a causal relationship. Or to obtain case 4, that there is no causal
relationship.

• Whether case 2 exists can be tested statistically under certain conditions (see course Impact
Evaluation Methods).

• A statistical check of case 4 can be done with methods of model selection, see chapter 10.
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4.1. Statements about causal relationships

Example: factors influencing imports

Objective/scientific question:

Identify the factors that influence imports to Germany and quantify their influence.

First considerations: Which variables of a time period could be relevant and
which directions of e�ect could exist between them?

The (m ◊ 1) vector st œ Rm contains all variables that could be relevant for the
analysis. The following are examples and incomplete (!):

• Human capital of the exporting country (s1)

• Colonial past of both countries (s2)

• Gross domestic product of the importing country (s3)

• GDP of the exporting country (s4)

• Distance to exporting country (s5)

• Area of exporting country (s6)

• Openness in country (s7)

• Imports (s8)

• unspecified (s9)

Figure 4.1 shows these variables and initially assumes simultaneity for all pairs
of variables.

To reduce the number of simultaneous relations, the following assumption seems
clearly justified:

Assumption: Area and distance are not influenced by other variables.

Figure 4.2 is obtained.

A further reduction of simultaneous relationships is best done by an economic
model, which however requires further assumptions. Section 6.3 presents an
economic model that allows all remaining simultaneous relationships between
imports (s8) and the other variables to be either eliminated entirely or transformed
into a causal direction of e�ect. Figure 4.3 is obtained in which, compared to figure
4.2, the number and type of relationships between imports and the other variables
has changed, but the number and type of relationships between the potential
impact variables has not.
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Figure 4.1.: Factors influencing trade flows: possible simultaneous relationships

Figure 4.2.: Factors influencing trade flows: first reduction in simultaneous relationships: blue arrows indicate
causal relationships
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4.1. Statements about causal relationships

Figure 4.3.: Factors influencing trade flows: causal and simultaneous relationships based on an economic model
plus other relevant influencing factors; dashed arrows represent the relevant causal relationships
(later model 2).

Figure 4.4.: Factors influencing trade flows: causal and simultaneous relationships based on an economic model
plus other relevant influencing factors; dashed arrows represent the relevant causal relationships
(later model 4).
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To answer the initial question, the remaining causal relationships in figure 4.3 must
be quantified. In the simplest case, this is done with a multiple linear regression
model.

In reality, the assumed economic model probably represents an oversimplification,
so that further influencing factors must be appropriately taken into account. An
example is shown in figure 4.4. How this is done e�ciently is also subject of this
course.

Multiple linear regression model

• In order to quantify the (average) e�ect of an action, in the above example a change
in economic power in the exporting country on imports, it is generally not su�cient
to consider only these two variables in a model. Instead, all relevant causal variables
must be considered in the model.

• If one has well justified that the variables z1, . . . , zk≠1 causally influence the variable y
and one is interested in quantifying the causal e�ect of the variable z1 on the variable
y and assumes a linear relationship (in the parameters —1, . . . , —k), then an example of
a multiple linear regression model results:

y = —1 + —2z1 + · · · + —kzk≠1 + u. (4.1)

– The variable u is called error term, which contains all non-modellable / non-
modelled influences. A possibility to interpret u more precisely is given by (5.29).

– The variable y is called endogenous variable because it is / should be explained
by the model.

– The variables zj postulated as causal for y are called exogenous variables.

In the following chapters, the properties and assumptions concerning these variables
will be specified in more detail.

• A quantification of the causal e�ect of z1 on y is done by determining —2. This requires

1. a sample with suitable data and

2. a suitable econometric estimation procedure.

Example: Factors influencing imports From figure 4.3 the model with
y = s8, z1 = s4, z2 = s5 follows.

Imports = —1 + —2GDP + —3Distance + u (4.2)

• In chapters 12 and 13, dynamic models are also considered. Here it is always assumed
that lagged endogenous variables, i.e. variables that lie in prior periods of the period
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4.1. Statements about causal relationships

under consideration, are causal. To enable a general notation, the variables on the
right-hand side are typically denoted by xj.

y = —1 + —2x2 + · · · + —kxk + u (4.3)

The multiple linear regression model (4.3) is a central tool for all the aims of
empirical analyses mentioned below and is therefore the focus of this course.

• The variables y and x have di�erent names in the literature.

Names for variables in regression models
y x

Dependent variable Independent variable
Explained variable Explanatory variable
Response variable Controll variable
Outcome variable Predictor variable
Regressand Regressor

Covariate

Simultaneous equation models

• In some analyses, there is a simultaneous relationship between the y of interest and
other variables si. Then there are several endogenous variables that must be modelled
explicitly or indirectly together.

• A simple example of a simultaneous equation model can be found in section 5.2,
equations (5.8) and (5.9).

• The estimation of simultaneous equilibrium models is covered in the master module
Advanced Econometrics.

Aims of empirical analyses

1. Identification and quantification of causal relationships

2. Falsification of postulated economic relationships

3. Point and interval forecasting

4. Analysis and evaluation of implemented/planned measures (economical, operational,
etc.)

5. Assessment of uncertainty and risk
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4.2. What is Econometrics?

Econometrics

• o�ers solutions to deal with unobserved factors in economic models,

• o�ers “both a numerical answer to the question and a measure how precise the answer is
(Stock & Watson 2007, p. 7)”,

• o�ers tools for disproving economic hypotheses by confronting theories with empirically
collected data using statistical methods, and o�ers tools for quantifying the probabilities
that such decisions are wrong, (see among others chapter 11)

• allows the quantification of the risks of predictions, decisions and even their own analysis,
(see among others section 9.3 and following)

• allows the quantification of causal relationships arising from an economic model.

In general:

• Quantitative answers always involve uncertainty. Uncertainty exists regarding:

– the “true” (data generating) mechanism,

– the choice of variables in the empirical analysis,

– the measurement of the variables,

– the choice of the econometric model,

– the statistical quality of the estimation or forecasting procedure.

• For the quantification of uncertainty the toolbox of probability theory is very useful,
but not only for this ....

4.3. Components of an empirical analysis

An empirical analysis should follow a structured procedure, which will be justified throughout
the course. It is structured as follows:

I. Economic analysis part

1. Scientific issue

• Careful formulation of the question of interest or problem.

2. Economic model

95



4.3. Components of an empirical analysis

• Specification of an economic model.

• Identify causal and simultaneous relationships.

• Obtaining hypotheses which are to be tested empirically.

• Interpretation of model parameters.

3. Data availability

• Which data are required with regard to the economic model and are already available
or can be acquired?

II. Econometric modelling process

1. Selecting a class of econometric models

• Consider variables from the economic model and their availability.

• Consider the functional relationships from the economic model or their approxima-
tion.

• Consider whether data generating mechanism (DGP) could be included in model
class.

• If applicable, formulate statistically testable hypotheses regarding the DGP.

• Choose estimation methods with favourable estimation properties: Which estimation
method is suitable and as e�cient as possible, i.e. makes the best possible use of
the sample information? What are the properties of the chosen estimation method?

2. Procuring data: Collecting a sample

• Characterisation of the sample survey.

3. Specify, estimate and select one or more econometric models:

• Use appropriate estimation methods.

• Use appropriate model selection methods.

4. Reviewing the selected models

• Is the selected model correctly specified? If yes, no relevant explanatory variables
are missing, the functional form is correctly chosen and the assumptions regarding
the errors are fulfilled.

• Are the assumptions for the chosen estimation procedure fulfilled, so that the
statistical properties of the estimation procedure apply and the inference is valid?

• If assumptions are violated, specify and estimate alternative models with di�erent
variables if necessary and/or choose alternative estimation procedures ≠æ Go back
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to step 1 or step 3.

5. Using the tested models:

• Testing the statistical hypotheses: Are the postulated (economic) hypotheses statis-
tically refuted by the data?

• Predictions

• Interpretation of parameters of interest

The econometric procedures relevant for the individual steps are discussed in the following
chapters.
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5. Fundamentals of Estimation and Test Theory

5.1. Samples and data-generating processes

Let st denote a m ◊ 1 vector of random variables.

Samples

• A sample is a subset of the population that can be surveyed (=random vector) or has
already been surveyed (=realisation of a random vector). A sample of sample size n is
given by

{st, t = 1, . . . , n}.

• The stochastic properties of a sample are fully described by the joint density of all n
sample observations:

fS1,S2,...,Sn
(s1, s2, . . . , sn).

With respect to this joint density, a sample is a possible future or already occurred
realisation with n observations st.

• Types of samples:

– Random sample: The n sample observations st, t = 1, . . . , n are drawn randomly,
i. e. they are independently and identically distributed (IID), i. e. in addition to
(2.22) the marginal densities are identical,

fS1,...,Sn
(s1, s2, . . . , sn)=fS(s1)fS(s2) · · · fS(sn) =

nŸ

t=1
fS(st). (5.1)

The great advantage of random sampling is that only the joint / marginal density fS(st)
has to be determined and not the joint density of all sample observations. All sample
observations are draws from the same density.

– There are stochastic dependencies between the individual sample observations st, i. e.
the decomposition (5.1) does not hold. Then it holds that

fS1,S2,...,Sn
(s1, s2, . . . , sn) = fSn|Sn≠1,...,S1(sn|sn≠1, . . . , s1)

fSn≠1|Sn≠2,...,S1(sn≠1|sn≠2, . . . , s1)
· · · fS2|S1(s2|s1)fS1(1)

=
nŸ

t=1
fSt|St≠1,...,S1(st|st≠1, . . . , s1)

(5.2)



by applying Bayes’ theorem several times. The joint density can be expressed as a
product of conditional densities in the case of dependent observations.

– If the index t notes the time, the observations are uniquely sorted. Then the time-ordered
collection of random variables {s1, . . . , sn} is called stochastic process and an observed
sample is called time series. To model them, time series models are used. If m = 1
and st is a scalar, it is a univariate time series. If m > 1 and st is a vector, one
examines a multivariate time series. An introduction to univariate time series models
can be found in section 12.3.1.

It is possible that the conditional densities fSt|St≠1,...,S1(st|st≠1, . . . , s1) depend on time t.
For example, they may depend on seasonal components or a time trend. This is indicated
either by suitable indices at the conditional densities or corresponding variables in the
condition of the densities. More on this in chapter 13.

– If time series data are available for all units in the cross-section, one speaks of panel
data, see master course Applied Microeconometrics.

Data generating mechanism, data generating process (DGP):

• In econometrics/statistics, the concept data generating mechanism or data generating
process (DGP) is often used instead of population. This refers to the stochastic
mechanism that may have generated the observed sample data {s1, s2, . . . , sn} in the real
world (Davidson & MacKinnon 2004, Sections 1.5, 3.1).

• The DGP underlying a random sample of n observations {s1, s2, . . . , sn} is fully determined
by the joint / marginal (m = 1) density fS(s).

• In the case of dependent sample observations, typically in the case of time series gener-
ated by a stochastic process, due to (5.2) the conditional densities fSt≠1|St≠2,...,S1(st≠1|st≠2, . . . , s1)
have to be considered.

Example: DGP for daily DAX returns:

Assumption regarding DGP: The daily DAX returns are independent and identi-
cally normally distributed

yt ≥ NID(µ0, ‡2
0). (5.3)

The expected value µ0 and variance ‡2
0 are fixed but unknown. Alternative

notation, cf. (2.6):

f(yt; µ0, ‡2
0) = 1

‡2
0
„

3
yt ≠ µ0

‡0

4
(5.4)

• As in the previous DAX example, in this text, parameters of a DGP are always noted with
index 0.

If one is only interested in the part of the DGP for the endogenous variables given the causal
variables, one decomposes the density f(st) suitably into conditional densities.
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5.2. Econometric Models

It denotes

st =

Q

ca
wt

yt

zt

R

db =

Y
__]

__[

variables without direct impact on yt

explained/endogenous variables
explanatory/exogenous variables

(5.5)

Factors influencing imports wt =
1
s1 s2 s3 s9

2
T

, yt = s8, zt =
1
s4 s5 s6 s6

2
,

s3 is irrelevant if only one importing country and one period is considered.

Then (in general) the following factorisation
fS(st) = fW|Y,Z(wt|yt, zt) fY|Z(yt|zt) fZ(zt) (5.6)

makes sense.

For the explanation of yt given the explanatory variables zt, only the conditional density
fY|Z(yt|zt)

is necessary. Neither the conditional density fW|Y,Z(w|y, z), nor the joint density fZ(zt) need
to be considered, which simplifies the modelling process substantially!

5.2. Econometric Models

To simplify the notation, in this section we only consider models for random samples.

Models for samples with stochastically dependent observations are covered in section 13.2 and
are an extension of the models from this section.

• An econometric model M is a family of functions M(·) depending on the data and a pú ◊1
parameter vector Â. The functions can describe (economic) relationships and implicitly or
explicitly contain a full or partial description of the DGP or at least an approximation of
the DGP (Davidson 2000, Section 4.1.1). The set of possible and allowed parameters is
called parameter space �,

M © {M(st; Â), Â œ �} , � ™ Rp
ú
. (5.7)

• Structural form of a model: Essential parameters of the model can be interpreted
(economically).

Example: supply and demand functions The variable qA denotes the
quantity supplied for a good given its price p, the variable qN denotes the
quantity demanded for the same good given its price p, the variables z1 and z2
are exogenous. The error terms are denoted by ũ1 and ũ2. A simple example of
a supply function and a demand function is then

Supply equation: qA = –1p + —1z1 + ũ1, (5.8a)
Demand equation: qN = –2p + —2z2 + ũ2, (5.8b)

Equilibrium condition: qA = qN = q. (5.8c)
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If market clearing is present, qN and qA are in principle unobservable, since only
the market clearing quantity q is observable. The parameters –1 and –2 can be
interpreted economically as the price elasticity of supply and the price elasticity
of demand, respectively.

Example: simultaneous equation model

The system of equations (5.8) can be written as a simultaneous equation model
by setting y1 = qA und y2 = p and dividing the demand equation by ≠–2 and
rearranging. One then obtains a simultaneous equation model with two endogenous
variables

y1 = –12y2 + —11 + —12z1 + u1, (5.9a)
y2 = –21y1 + —21 + —23z2 + u2. (5.9b)

In (5.9) (and in (5.8)) there are not only causal variables on the right-hand side,
as in (4.1), but also endogenous variables. The parameter –12 measures the causal
e�ect y2 ≠æ y1 and the parameter –21 measures the causal e�ect y1 ≠æ y2. If one
additionally assumes

E[u1|z1, z2] = 0, E[u1|z1, z2] = 0, (5.9c)
‡2

1 = V ar(u1|z1, z2), ‡2
1 = V ar(u2|z1, z2), (5.9d)

the simultaneous equation model (5.9) with st =
1
y1t y2t z1t z2t

2
T

yields the
parameter vector

Â =
1
–12 —11 —12 ‡2

1 –21 —21 —23 ‡2
2

2
. (5.10)

• It is possible, as in the case of a simultaneous equation model (5.9), that the elements of
structural models do not contain a set of conditional densities or parts thereof (such as
conditional expectation values). In such cases, the structural model has to be transformed
so that the elements of the derived model are conditional densities or parts thereof.

Notation: This transformation also produces a new parameter vector ◊ of length p,
which results from the parameter vector Â of the structural form and typically has fewer
parameters, p Æ pú. We then write

◊ = ◊(Â) œ « for all Â œ Õ. (5.11)

So the corresponding parameter space is «.

• If joint densities are considered for st that depend on a parameter vector Â, one writes

fS(st; ◊) = fS(st; ◊(Â)).

Thus, the set of all densities implied by a structural model M can be written as

MD © {fS(st; ◊(Â)), Â œ �}. (5.12)

In many standard cases, the structural model already corresponds to the model definition
(5.12). Therefore, Davidson & MacKinnon (2004, Section 3.1) define an econometric model
as a set MD of possible DGPs. However, the definition (5.7) used here is more general.
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5.2. Econometric Models

• A parameter vector Â of a model for which the density fS(st; ◊) implied by the model is
equal to the density of the DGP fS(st), i. e.

fS(st; ◊(Â0)) = fS(st)¸ ˚˙ ˝
DGP

, (5.13)

is denoted by Â0 and is often referred to as true parameter vector or correct parameter
vector. The same applies to ◊0 = ◊(Â0).

• Models MD are also called models in reduced form. The parameters of interest ◊ of a
reduced form model are interpretable only if the structural form and reduced form of a
model are identical. More on this in section 13.3.

Example: DAX returns – continued: The model with st = yt includes all
possible DGPs of the type

yt ≥ NID(µ, ‡2), ◊ =
A

µ
‡

B

œ « œ
1
R ◊ R+

2
. (5.14)

Or.:
M = MD =

;
f(yt; µ, ‡2) := 1

‡
„

3
yt ≠ µ

‡

4
, µ œ R, ‡ œ R+

<
.

The structural model is a set of densities MD.

Example: simultaneous equation model — reduced form To simplify
the following illustrations, the simultaneous equation system (5.9) is written in
matrix notation

A
1 ≠–12

≠–21 1

B

¸ ˚˙ ˝
A

A
y1
y2

B

=
A

—11
—21

B

¸ ˚˙ ˝
—

+
A

—12 0
0 —23

B

¸ ˚˙ ˝
B

A
z1
z2

B

+
A

u1
u2

B

,

so that the structural form in matrix notation is

Ay = — + Bz + u. (5.15)

If A is regular, the reduced form results from inversion

y = A≠1—¸ ˚˙ ˝
b

+ A≠1B¸ ˚˙ ˝
D

z + A≠1u¸ ˚˙ ˝
Á

,

y = b + Dz + Á.

In order to obtain a model of the type MD for (5.9), one additionally has to use

– an assumption concerning the joint distribution of the errors u1t and u2t and

– an assumption regarding the joint distribution of the exogenous variables z1t

and z2t and their stochastic relation to the errors, e. g.
A

u1
u2

B

|z1, z2 ≥ N

AA
0
0

B

, �u

B

.
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Then

Á|z ≥ N(0, �), � = A≠1�u(A≠1)T , (5.16)
y|z ≥ N(b + Dz, �) (5.17)

respectively

fY|Z(y|z; b, D, �) = 1
2fi

det(�)≠1/2 exp
3

≠1
2(y ≠ b ≠ Dz)T �≠1(y ≠ b ≠ Dz)

4

MD =
Ó
fY|Z(y|z; b, D, �), b, D, � elements of the parameter space «

Ô
.

This is presented in even more detail in section 13.2 in the more general framework
of multivariate time series models..

• Correctly specified econometric model: A model is

– correctly specified, if DGP œ MD,

– misspecified, if DGP ”œ MD

holds.

Example: DAX returns – continued: If ◊0 = (µ0, ‡0)T œ «, then the
model (5.14) also contains the actual DGP (5.3) with µ0 and ‡2

0 and the model
is correctly specified.

However, if the DGP of the DAX returns is given by a t-distribution

yt/‡0 IID t(m0), m0 = 5,

the model (5.14) is misspecified.

Example: DAX returns – continued: The model (5.14) is fully specified. A
model yt ≥ IID(µ, ‡2) is not fully specified because a distributional assumption
is missing.

• Davidson & MacKinnon (2004, Section 1.3) call a parametric model fully specified if it
is possible to generate realisations of the dependent variable yt after assigning numerical
values to all parameters present in the model. Otherwise it is partially specified.

• If a model in the reduced form MD can be derived from the model M in structural form,
we say that the model M is fully specified.

• If a structural model M is fully and moreover correctly specified, there exists a
parameter vector ◊0 = ◊(Â0) for which the density in MD corresponds to the DGP:

MD ´ MD(st; ◊0) © f(st; ◊0) = fS(st)¸ ˚˙ ˝
DGP

. (5.18)
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5.2. Econometric Models

Example: Simultaneous equation model

If for the simultaneous equation model (5.9) with parameter vector (5.10) no
joint distribution of the causal variables z1 and z2 is given, but only a joint
distribution (5.16) of the errors, then “only” a model for conditional densities
can be derived.

• Model classes:

– Univariate models: st = yt, is a scalar, m = 1.

– Multivariate models: st is a vector, m > 1.

• Econometric models in which the implied DGPs are distinguished by functions depending
on the possible variables and a parameter vector Â of fixed length pú < Œ are called
parametric econometric models.

• However, semiparametric models and nonparametric models also play a role in
econometric theory and practice. A brief introduction is provided by Davidson & MacKinnon
(2004, Section 15.5). A detailed presentation is given in the monograph by Li & Racine
(2007).

Conditional models

• If one is only interested in explaining the endogenous variables y given the causal variables
z, it is su�cient to consider conditional models. Based on the factorisation of the DGP in
(5.6) we obtain a conditional econometric model (for conditional densities)

MD ©
Ó
fY|Z(y|z; ◊), ◊ œ «

Ô
. (5.19)

The variables z are determined outside the model. The distinction into endogenous and
exogenous variables was already made in the first presentation of the multiple linear
regression model (4.1) in section 4.1:

– Endogenous variable(s): variable(s) is/are generated by the mechanism described in
the model.

– Exogenous variables: variables that can be determined outside the model (as they
have no simultaneous relationship with the endogenous variables).

• Important: It is often not clear whether a variable sj has a simultaneous relationship
with y or is causal for y. Then this must be determined in the modelling process (which,
however, is only possible under certain conditions). This requires that sj is first allowed
to be simultaneous in the model and that at the same time parameter values exist in the
model for which sj becomes causal. An example of this can be found in 13.2 and 13.3.

• In the following up to chapter 13 we assume that only one endogenous variable
is to be explained and all explanatory variables are causal. Under this assumption,
the structural form and the reduced form are identical and ◊ = Â holds.
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Example: Factors influencing imports

In order to obtain a density conditional on GDP and distance for imports
based on the regression equation (4.2), an assumption must still be made for
the distribution of the errors and their relationship to the conditioning random
variables GDP and distance. Often a conditional normal distribution

u|GDP, distance ≥ NID(0, ‡2)

is assumed. Under this assumption, it follows immediately that imports are
conditionally normally distributed:

Imports|GDP, distance ≥ NID(—1 + —2 GDP + —3 distance, ‡2). (5.20)

Or with ◊ =
1
—1 —2 —3 ‡2

2
T

M = MD = {f(Imports|GDP, distance; Â)

© 1
‡2 „

A
Imports ≠ —1 ≠ —2 GDP ≠ —3 distance

‡

B

,

◊ œ « œ
1
R3 ◊ R+

2Ô
.

• For an empirical analysis, often di�erent models Mi, i = 1, 2, . . . , I are considered. With
the help of model selection methods, an attempt is then made to select a correct model.
More on this later.

• In practice, econometric models are (almost) always misspecified. For conditional fully
specified models this means

f(y|z) ”™ MD,i , i = 1, 2, . . . , I.

One then tries to choose from the di�erent models, i = 1, 2, . . . , I, a model that provides
the best possible approximation to the DGP for the purpose of the investigation. However,
we ignore the resulting consequences in this course.

Information sets

• The set of all potential variables that could be considered as causal variables for a given
question and a model to be used for it to explain the endogenous variables yt is often
referred to as information set and abbreviated with �t. The information set typically
depends on time t for time series, hence the index t, see section 13.1.

• The set of all variables used as causal variables in a given model to explain the endogenous
variables yt is also an information set and will be abbreviated as It µ �t in the following.

5.3. Regression models

For many (economic) questions it is not necessary to model the DGP or the conditional density
completely.
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5.3. Regression models

Notation: All explanatory variables and a constant, if necessary, are combined in the (1 ◊ k)
row vector

Xt ©
1
Xt1 · · · Xtk

2
.

If a constant is present, the following applies,

Xt =
1
1 z1t · · · zk≠1,t

2
.

Very often it is su�cient to model individual characteristics of the (conditional) densities, in
particular

• the conditional expected value E [yt|Xt] and/or

• the conditional variance V ar (yt|Xt) or also

• conditional quantiles.

Regression models:

• A conditional model for modelling the conditional expected value E [yt|Xt] is called a
regression model.

• The identity
yt = E [yt|Xt]¸ ˚˙ ˝

systematic part

+ yt ≠ E [yt|Xt]¸ ˚˙ ˝
unsystematic part

becomes a regression model by specifying the conditional expected value function E [yt|Xt].

The conditional expected value is called the systematic part and is written in the following
as m(Xt) = E[yt|Xt], where the conditional expected value is calculated with respect to the
density of the DGP. The unsystematic part is called the error term or the disturbance
term. In the context of the correct function m(Xt), the error term is denoted by Át,

yt = m(Xt) + Át. (5.21)

• The function of the conditional expected value m(Xt) is generally not known. If we assume
that the function m(Xt) is linear in the parameters —1, . . . , —k, we obtain

m(Xt, —) = xt1—1 + xt2—2 + · · · + xtk—k = Xt—, — :=

Q

cca

—1
...

—k

R

ddb (5.22)

If this assumption is correct and there exists a — = —0 œ � such that

m(Xt, —0) = m(Xt) = E[yt|Xt], (5.23)

then the function of the conditional expected value is correctly specified and —0
is called the correct parameter vector.
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• For all parameter vectors in the parameter space, — œ �, one obtains the multiple linear
regression model

yt = —1xt1 + —2xt2 + · · · + —kxtk + ut (5.24)
yt = Xt— + ut. (5.25)

• Notation: For a given sample {(yt, Xt), t = 1, . . . , n}, strictly speaking, one would have to
write ut(—) instead of ut, i. e.

yt = Xt— + ut(—), (5.26)

since the error term must change if — changes, as long as all yt and Xt remain the same.
We will use this notation later when interpreting the OLS estimator. Otherwise, we simply
use ut, as is common in the literature.

• Notation: Unlike Wooldridge (2009), Davidson & MacKinnon (2004) start the index of
parameters at 1 and count to k. The course generally follows Davidson & MacKinnon
(2004), also in other notational matters.

• If the conditional expected value function is correctly specified, then (5.22) holds
for — = —0. Substituting —0 into the multiple linear regression model (5.25) and determining
the conditional expected value shows that then

E [ut|Xt] = 0 (5.27)

holds. Therefore, it makes sense to use the requirement (5.27) to estimate —0. This leads
directly to the least squares estimator (6.5), which is discussed in the following chapters.

• Possible interpretation of the error term The condition (5.27) can be interpreted
as follows. There are other causal factors vt for yt that are stochastically independent of
the explicitly considered causal factors z1t, . . . , zk≠1,t and also not considered in the vector
st in (5.5). If these influence yt as a linear combination, the equation contains all causal
variables

yt = —20z1t + —30z2t + · · · + —k0zk≠1,t + vT

t
“0. (5.28)

If it were possible to observe vt in addition to z1t, . . . , zk≠1,t, then yt could be predicted
exactly given that the true parameters are known, since E[yt|z1t, . . . , zk≠1,t, vt] just corre-
sponds to the right-hand side of (5.28) and hence yt.

If the vt are not known, only the conditional expectation value

E[yt|z1t, . . . , zk≠1,t] = —20z1t + —30z2t + · · · + —k0zk≠1,t + E[vt|z1t, . . . , zk≠1,t]T “0

= —20z1t + —30z2t + · · · + —k0zk≠1,t + E[vt]T “0¸ ˚˙ ˝
©—1

can be determined. The second equal sign follows because of the stochastic independence
of vt and the zjt, j = 1, . . . , k ≠ 1. Thus, the constant —1 just corresponds to the linear
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5.3. Regression models

combination of the unconditional expected values of all unconsidered factors vt and the
parameter vector “0.

Alternatively, it is possible that one is not interested in the individual influences vt, so that
it is su�cient to consider the conditional expected value.

The error term ut then results from

ut = vT

t
“0 ≠ E[vt]T “0 (5.29)

from the individual deviations from this mean. Furthermore, (5.27) holds.

Therefore, this part of the model is called the unsystematic part.

Reminder: In empirical analysis, causality can only be determined in the average e�ect of
an action.

Important: If one were to include some elements of vt in the regression, this would lead
to a reduction in the variance of the error term. If vt could be included completely, the
variance disappears, since yt can be predicted exactly.

• Regression models belong to conditional models because the regressors are not explained
in the model.

• Simple linear regression model:

yt = —1 + —2xt + ut. (5.30)

• Regression models are either

– correctly specified (DGP included in the model) or

– misspecified (DGP not included in the model).

Example of misspecified model: DGP

yt = —10 + —20xt + —30x
2
t

+ vt, E[vt|xt] = 0, —30 ”= 0 (5.31)

Model: the simple linear regression model (5.30).

The conditional expected value given the DGP is:

yt = —10 + —20xt + —30x
2
t

+ vt¸ ˚˙ ˝
ut

E [yt|xt] = —10 + —20xt + E [ut|xt]¸ ˚˙ ˝
=—30x

2
t
”=0

,

such that condition E[ut|xt] = 0 in (5.30) is violated and the DGP is not included
in the model (5.30).
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Note: For the analysis of a specific question, it is possible to use misspecified models under
certain conditions. This includes the selection of an adequate estimation procedure, e. g.
the use of the instrument variable estimator (IV estimator) or the GMM estimator
in each case with appropriate instruments, see master course Advanced Econometrics
or Davidson & MacKinnon (2004, Chapter 8 and 9).

• Regression models are fully specified if all conditional density parameters are included in
the modelling. I. e. in particular that the distribution of the disturbance term is modelled.

Examples on fully and partially specified regression models:

– The regression model

ln(Importet) = —1 + —2 ln(BIPt) + ut,

ut| ln(BIPt) ≥ NID(0, ‡2)
(5.32)

is fully specified.

– In contrast, if only ut| ln(BIPt) ≥ IID(0, ‡2) is specified in (5.32) in the
model, the distribution of the disturbance term remains open and the model is
partially specified. If the DGP is included in the model, the model is partially
but correctly specified.

• Property of the true parameter vector —0 in the multiple linear regression model of
the population:

– In the correctly specified model, E[yt|Xt] = Xt—0 and thus (5.27) E[ut|Xt] = 0 holds,
where according to (5.26) ut = ut(—0). This results in

E[utxtj] = 0 j = 1, . . . , k, E[utXt] = 0. (5.33)

After multiplying (5.25) with XT

t
, we get

XT

t
yt = XT

t
Xt—0 + XT

t
ut

E
Ë
XT

t
yt

È
= E

Ë
XT

t
Xt

È
—0 + E

Ë
XT

t
ut

È

¸ ˚˙ ˝
=0

—0 = E
Ë
XT

t
Xt

È≠1
E

Ë
XT

t
yt

È
, (5.34)

provided E
Ë
XT

t
Xt

È
is invertible. Since (5.33) is only valid for the true parameter vector if

specified correctly, this condition can be used to derive an estimator. Since the conditions
(5.33) contains second moments of the DGP, they are called moment conditions. If
the moments change, the parameter vector also changes.

– Using the moment conditions, estimators can be derived in many cases. In section
6.2.1 it is shown that the moment conditions (5.33) imply the OLS estimator.

• Now the question is what happens when the moment condition is applied to a
misspecified model. We consider the case where (5.21) describes the DGP, where the
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5.3. Regression models

regression function m(·) can also be non-linear in the parameters, so that

yt = Xt— + m(Xt) ≠ Xt— + Át¸ ˚˙ ˝
ut(—)

. (5.35)

In the following, the expectation value concerning the densities of the unknown DGP is
calculated. The conditional expectation value of the error term ut(—) is

E[ut(—)|Xt] = E [m(Xt) ≠ Xt— + Át|Xt]
= m(Xt) ≠ Xt— + E[Át|Xt]¸ ˚˙ ˝

=0

= m(Xt) ≠ Xt— =

Y
]

[
= 0 if correctly specified and — = —0,

”= 0 possible if model misspecified.
(5.36)

In the second case, an approximation error may occur for individual observations.

Analogous to the procedure for correct specification, one obtains

XT

t
yt = XT

t
Xt— + XT

t
ut(—), (5.37)

E[XT

t
yt] = E[XT

t
Xt]— + E[XT

t
ut(—)]. (5.38)

Applying the moment condition (5.33) accordingly to E[XT

t
ut(—)] and there exists a —00,

so that

E[XT

t
ut(—00)] = 0 (5.39)

holds, we get

—00 = E[XT

t
Xt]≠1E[XT

t
yt]. (5.40)

The parameter vector —00 is often referred to as pseudo-true parameter vector.

Interpretation of the pseudo-true parameter vector:

1. If there is a constant in the model, i.e. xt1 = 1, then it follows from the moment
condition (5.39) that the unconditional expected value of the errors is zero, since
E[xt1ut(—00)] = E[ut(—00)] = 0 holds.

Then we get

Cov(Xt, ut(—00)) = E[XT

t
ut(—00)] ≠ E[XT

t
] E[ut(—00)]

= E[XT

t
ut(—00)] = E[XT

t
(m(Xt) ≠ Xt—00)] + E[XT

t
Át]

= E[XT

t
ut(—00)] = E[XT

t
(m(Xt) ≠ Xt—00)]. (5.41)
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The moment condition (5.39) therefore guarantees (given a constant in the model)
that for the pseudo-true parameter vector —00 the covariance between the
regressors Xt and the approximation errors m(Xt) ≠ Xt—00 is zero. In other
words, the approximation errors and the regressors Xt are uncorrelated. In this case,
(5.40) can also be written as

—00 = V ar(Xt)≠1 Cov(XT

t
, yt).

˘ Proof: Cov(XT

t
, yt) = E[XT

t
yt]≠E[XT

t
]E[yt] = E[XT

t
yt]≠E[XT

t
]E[Xt]—00 ≠E[XT

t
Át] =

E[XT

t
yt] +

1
V ar(Xt) ≠ E[XT

t
Xt]

2
—00, so that

Cov(XT

t
, yt) ≠ V ar(Xt)—00 = E[XT

t
yt] ≠ E[XT

t
Xt]—00.

2. A second interpretation of the pseudo-true parameter vector follows from the following
reasoning.

Consider the expected value of the squared deviations of the endogenous variable yt

from its linear predictions Xt—00 (linear in the parameters —). This expected value
will be referred to as the mean squared error (MSE) in the following section.

First, one considers for a given DGP the MSE for a multiple linear regression model for
any parameter vector —

MSE(yt, Xt; —) © E[(yt ≠ Xt—)2] = E[y2
t

≠ 2ytXt— + —T XT

t
Xt—] (5.42)

= E[y2
t
] ≠ 2E[ytXt]— + —T E[XT

t
Xt]—

and then searches for the parameter vector that minimises this mean squared error. This
is done by deriving the MSE(yt, Xt; —) with respect to — and setting to zero

ˆMSE(yt, Xt; —)
ˆ—

= ≠2E[XT

t
yt] + 2E[XT

t
Xt]—

!= 0. (5.43)

From this follows again

—00 = E
Ë
XT

t
Xt

È≠1
E

Ë
XT

t
yt

È
. (5.40)

Thus, the pseudo-true parameter vector —00 also yields the best linear prediction
of yt in terms of a minimum mean squared error (MSE) of the regression model.

Outlook: The equation (5.43) further motivates a possible derivation of the least squares
estimator in section 6.2.2.

Obviously, —00 = —0 holds if the regression model is correctly specified.
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5.4. Relevant properties of estimators

5.4. Relevant properties of estimators

Notation for expected values of matrices:

E[X] =

Q

cccca

E[x11] E[x12] · · · E[x1k]
E[x21] E[x22] · · · E[x2k]

... ... . . . ...
E[xn1] E[xn2] · · · E[xnk]

R

ddddb
(5.44)

Estimator and estimate

• The model contains p parameters that are summarised in the (p ◊ 1) parameter vector ◊.
An estimator ◊̃(y1, . . . , yn) for the parameter vector ◊ is a (vector-valued) function
that contains as argument only sample observations (y1, . . . , yn) and is used to determine
estimates of ◊ that are as close as possible to ◊ in a sense to be further specified. An
estimator ◊̃(y1, . . . , yn) is a function of random variables since the sample observations
are random variables before they are collected.

• If an estimator is calculated on the basis of a collected sample, an estimate of ◊0 is
obtained.

• In general, the estimate deviates from the parameter values ◊0 of the actual DGP available.
These deviations are called estimation errors ◊̃(y) ≠ ◊0. The parameter vector of the
actual DGP is often referred to as true parameter vector, as explained above.

Selection criteria for estimators

• The choice of estimation method depends on the chosen assessment of the estimation errors,
which in turn depends on the research question. An assessment of the estimation error for
a parameter i is possible using the loss function L

1
◊̃i(y), ◊i

2
. Typical loss functions for

scalar parameters ◊ are:

– Quadratic loss function:

Lsq

1
◊̃(y), ◊0

2
:=

1
◊̃(y) ≠ ◊0

22
(5.45)

The quadratic loss function measures the square of the Euclidean distance (length)
between the estimated ◊̃ and the true parameter ◊0.

– Absolute value of the estimation error:

Labs(
1
◊̃(y), ◊0

2
:=

---◊̃(y) ≠ ◊0
--- . (5.46)

– Asymmetric loss function: Example:

Labs(
1
◊̃(y), ◊0

2
:= a

---◊̃(y) ≠ ◊0
--- 1

1
◊̃(y) ≠ ◊0 > 0

2

+ b
---◊̃(y) ≠ ◊0

--- 1
1
◊̃(y) ≠ ◊0 < 0

2
, a, b > 0,

(5.47)

where 1(·) denotes the indicator function.
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• The value of the loss function depends on the sample. To get a sample-independent value,
one considers the expected value of the loss function

E
Ë
L

1
◊̃(y), ◊0

2È
, (5.48)

where the expected value is determined with respect to the sample observations y that can
be generated by the DGP. This expected value measures the expected loss of an estimator
and is referred to in statistics as the risk of an estimator for parameter ◊.

Interpretation: If the loss function is calculated for a large number of di�erent samples
from the same DGP, the average is close to the risk.

• The risk regarding the squared loss function for a scalar parameter is also called mean
squared error (MSE),

MSE
1
◊̃(y

2
:= E

51
◊̃(y) ≠ ◊0

22
6

. (5.49)

If all p parameters are considered together, the matrix of mean squared errors is
obtained:

MSE
1
◊̃(y

2
:= E

51
◊̃(y) ≠ ◊0

2 1
◊̃(y) ≠ ◊0

2
T

6
. (5.50)

The MSE matrix can be decomposed into two important components, which are defined
below.

• Expected value minimises MSE

• Bias of an estimator ◊̃(y):

B
1
◊̃(y)

2
:= E

Ë
◊̃(y)

È
≠ ◊0 (5.51)

• Variance-covariance matrix / Covariance matrix / Variance matrix of an estimator
◊̃(y):

V ar
1
◊̃(y)

2
:= E

51
◊̃(y) ≠ E

Ë
◊̃(y)

È2 1
◊̃(y) ≠ E

Ë
◊̃(y)

È2
T

6
(5.52)

The variance-covariance matrix is as follows in detail (for better readability, the dependence
on the sample is not indicated, as is generally the case).

V ar
1
◊̃

2
:= E

51
◊̃ ≠ E

Ë
◊̃

È2 1
◊̃ ≠ E

Ë
◊̃

È2
T

6

=

Q

cccca

V ar(◊̃1) Cov(◊̃1, ◊̃2) · · · Cov(◊̃1, ◊̃p)
Cov(◊̃2, ◊̃1) V ar(◊̃2) · · · Cov(◊̃2, ◊̃p)

... ... . . . ...
Cov(◊̃p, ◊̃1) Cov(◊̃p, ◊̃2) · · · V ar(◊̃p)

R

ddddb
.

(5.53)

• Decomposition of the MSE matrix: In general, the MSE matrix can be decomposed
into the variance-covariance matrix of the estimator and the outer product of the biases:

MSE(◊̃(y)) = V ar
1
◊̃(y)

2
+ B

1
◊̃(y)

2
B

1
◊̃(y)

2
T

, (5.54)
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5.4. Relevant properties of estimators

• If there is no bias, the estimator is called an unbiased estimator. Then, the expected
value of the estimator regarding all possible samples corresponds to the parameter vector
of the actual DGP.

E
Ë
◊̃(y)

È
= ◊0. (5.55)

Interpretation: Unbiasedness implies that for a large number of samples the average value
of all estimates is very close to the true value.

• If an estimator is unbiased, i.e.
Ë
◊̃(y)

È
= ◊0, the MSE is equal to the variance of the

estimator.

• Properties of variance-covariance matrices

– Variance-covariance matrices are symmetric and always positive semidefinite, but
mostly positive definite, since due to their definition (1.8) holds.

– The inverse of a variance-covariance matrix

V ar
1
◊̃

2≠1

is called the precision matrix.

– Comparison of variance-covariance matrices of two estimators ◊̂ and ◊̃

If two estimators are unbiased and the MSE is used as the selection criterion, the
estimator with the smaller variance of the two is chosen.

In the scalar case (p = 1) this is easy, as both variances can be easily compared. If
p > 1, one has to compare two variance-covariance matrices. The estimator ◊̂ has a
“smaller” variance-covariance matrix than the estimator ◊̃ if the following di�erence of
the precision matrices

V ar(◊̂)≠1 ≠ V ar(◊̃)≠1

is positive semidefinite and not zero. If both variance-covariance matrices are positive
definite, it holds equivalently that the di�erence

V ar(◊̃) ≠ V ar(◊̂)

is positive semidefinite and not zero (Davidson & MacKinnon 2004, Section 3.5, page
105 and Exercise 3.8).

Interpretation: The property of a positive semidefinite di�erence of variance-
covariance matrices means that any linear combination of the di�erence is non-negative.
In particular

V ar(◊̃j) Ø V ar(◊̂j), j = 1, . . . , p. (5.56)

• Correlation matrix of an estimator ◊̃:
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Cf. for the definition of a correlation (2.24)

Corr
1
◊̃

2
:=

Q

ca
Cov(◊̃i, ◊̃j)

1
V ar(◊̃i)V ar(◊̃j)

21/2

R

db

i=1,...,p,j=1,...,p

(5.57)

The correlation matrix can also be represented in matrix notation as

Corr
1
◊̃

2
=

1
diag(V ar(◊̃))

2≠1/2
V ar(◊̃)

1
diag(V ar(◊̃))

2≠1/2
, (5.58)

where diag(A) denotes a diagonal matrix that contains the diagonal elements of the matrix
A on the diagonal.

Essential to the correlation matrix is that all elements on the diagonal are 1 and all
non-diagonal elements are in the interval [≠1, 1].

R-commands
Calculating the correlation matrix from a covariance matrix with cov2cor().

• Desirable requirements for an estimator:

1. minimum risk or

2. minimum risk with unbiasedness, i.e. minimum variance.

• E�ciency of an estimator: If the MSE is chosen as the selection criterion for the risk and
if one considers estimators from a class that contains exclusively unbiased estimators, an
estimator of the considered class is called e�cient if it has the smallest possible variance in
the sense determined above.

Specifically: An estimator —̂ is the e�cient estimator in a class of unbiased
estimators —̃, if it holds that the matrix of the di�erence of variance-covariance matrices
V ar(—̃) ≠ V ar(—̂) is positive semidefinite.

• Knowledge of the probability distribution of the estimator for each sample size n. This
distribution is called the exact probability distribution of an estimator.

Important properties of an estimator for finite samples

• Unbiasedness

• Variance-covariance matrix and correlation matrix

• E�ciency or more generally risk

• Exact probability distribution

Example: the estimator of the expected value µ:
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5.4. Relevant properties of estimators

• A possible estimator of the expected value is given by the arithmetic mean
of all sample observations

µ̂(y) := 1
n

nÿ

t=1
yt. (5.59)

µ̂(y) is a special case of the least squares estimator (6.5).

– Calculating the bias:

E [µ̂(y)] ≠ µ0 = E

C
1
n

nÿ

t=1
yt

D

≠ µ0 = 1
n

nÿ

t=1
E [yt] ≠ µ0

IID= 1
n

nÿ

t=1
µ0 ≠ µ0 = µ0 ≠ µ0 = 0.

The estimator of the expected value is unbiased in the case of a random
sample.

– Calculating the variance of the estimator:

V ar (µ̂(y)) = V ar

A
1
n

nÿ

t=1
yt

B
IID= 1

n2

nÿ

t=1
V ar(yt) = ‡2

0
n

(5.60)

– MSE of the estimator: corresponds to the variance, since the estimator is
unbiased. The MSE here also corresponds to the risk with regard to the
quadratic loss function.

Note: The risk of the expected value estimator decreases with increasing
sample size n at the rate n.

– Distribution of the estimator: Due to the model assumption (5.14), the
estimator µ̂(y) = 1

n

q
n

t=1 yt is a linear combination of independently and
identically normally distributed yt. Therefore

y ≥ N (µ, �) mit µ = µÿ, � = ‡2I,

where ÿ is a (n◊1) vector with ones. The sum ÿT y = q
n

t=1 yt is also normally
distributed because of (2.33) with

ÿT y ≥ N
1
ÿT µ, ÿT �ÿ

2
.

Because of ÿT µÿ = nµ and ÿT �ÿ = n‡2 we get

ÿT y ≥ N(nµ, n‡2) und

µ̂(y) ≥ N

A

µ,
‡2

n

B

. (5.61)

So the estimator of the expected value µ̂(y) is also normally distributed.
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• Another possible estimator is

µ̃(y) = 1
2(y1 + yn). (5.62)

Again, determine all the properties and compare them. Show that in the
comparison of the arithmetic mean (5.59) and (5.62), the former is e�cient.

Asymptotic properties

In principle, the indicators considered so far - bias, variance, risk, MSE and distribution -
depend on the sample size and the DGP. The dependence on parameters of the DGP can
be very inconvienent, since these are unknown and thus the selection of a suitable estimator
is not well possible. For this reason, indicators are also considered which, in such cases, are
independent of the DGP in a suitable sense and at least guarantee that the properties of an
estimator under consideration approach "‘desirable’" properties with increasing sample size,
e.g. unbiasedness. One then "‘operates’" asymptotics or asymptotic theory: one indexes
the estimator function with sample size n and investigates the properties of ◊̃n for n æ Œ.
One thus examines the convergence properties of a sequence of functions, see mathematical
pre-course chapter 3.

Important asymptotic properties of an estimator

• Consistency

• Asymptotic variance

• Asymptotic e�ciency

• Asymptotic distribution

The properties in detail:

• Consistency: if an estimator is biased, one can ask whether the magnitude of the bias
decreases as the sample size increases and the estimator converges to the true parameter
vector ◊0 when the sample size tends to infinity. “Convergence” here means convergence
of the estimator in probability

plim
næŒ

◊̃n = ◊0 (5.63)

or almost sure convergence
◊̃n

a.s.≠æ ◊0. (5.64)
Consistency implies that

1. the estimator is asymptotically unbiased

lim
næŒ

E
Ë
◊̃n

È
= ◊0.

2. the variance of the estimator for n æ Œ tends to zero.
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5.4. Relevant properties of estimators

• If an estimator is not consistent, it is called inconsistent.

Example: The arithmetic mean as an estimator of the expected value:
(5.59) is consistent because it is unbiased for any n and the variance approaches
zero with n æ Œ, see (5.60).

• Asymptotic variance-covariance matrix: In general, the variance-covariance matrix
depends on the sample size n. If, as necessary for consistency, the variances and covariances
of the estimator for n æ Œ tend to zero, the variance-covariance matrices of di�erent
estimators cannot be compared for the case n æ Œ. Therefore, no non-degenerate
probability distribution can exist for the case n æ Œ. Both require that the dependence of
the variance-covariance matrix V ar(◊̂n) on the sample size for n æ Œ can be eliminated.

To prevent this dependence of the variance on ◊̂, one must multiply ◊̂n by a sample size
dependent factor r(n), which prevents V ar(r(n) · ◊̂n) from converging to zero or
from diverging to infinity. It may also be necessary to have a specific factor ri(n)
for each parameter estimator ◊̂in. These factors are called convergence rates. As a
result, one obtains the asymptotic variance-covariance matrix, which is often noted
as asyVar(◊̃n).

Example: The arithmetic mean as an estimator of the expected value:
The collapse or divergence of the variance of µ̂n ≠ µ0 is prevented by multiplying
µ̂n ≠ µ0 by the factor r(n) =

Ô
n which depends on the sample size. From

V ar(µ̂n) = n≠1‡2
0 follows

V ar
1Ô

n (µ̂n ≠ µ0)
2

= nV ar (µ̂n ≠ µ0) = n
‡2

0
n

= ‡2
0 = asyVar(µ̂n). (5.65)

Thus ‡2
0 is the asymptotic variance of the arithmetic mean and the convergence

rate is
Ô

n.

Example: The ine�cient expected value estimator (5.62)

Show that for this expected value estimator r(n) = 1 holds. Thus, its rate of
convergence is smaller than the rate of the arithmetic mean, which is why the
latter is preferable.

• Asymptotic distribution:

– The asymptotic distribution is the limit distribution that results for n æ Œ. Later this
will be defined in more detail.

Example: Estimator of the expected value: The distribution or density
f(µ̂; µ0, ‡2

0/n) of the estimator of the expected value µ̂ depends on the sample
size, as its variance depends on the sample size, see (5.61).

The normal distribution becomes independent of the sample size n if the asymp-
totic variance can be used. This is achieved by considering the sequence of
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random variables multiplied by the convergence rate:
Ô

n (µ̂n ≠ µ0) ≥ N(0, ‡2
0). (5.66)

Since the distribution N(0, ‡2
0) is independent of the sample size, it is also valid

for n æ Œ and thus the limit distribution
Ô

n(µ̂n ≠ µ0) d≠æ N(0, ‡2
0). (5.67)

– When is knowledge of the asymptotic distribution useful?

If the normal distribution assumption cannot be made, the derivation in (5.66) will no
longer work. Thus, if only

yt ≥ IID(µ0, ‡2
0), t = 1, 2, . . . , n, (5.68)

can be assumed, it is not possible to determine the exact probability distribution of
the estimator

Fn(z) := P (µ̂n Æ z).
However, if the asymptotic distribution is known in such a case, it can be used approxi-
matively instead of the unknown exact distribution. For the present case, the asymptotic
distribution exists, see section 5.5.2.

• Asymptotic e�ciency of an estimator

For two asymptotically normally distributed estimators ◊̂n and ◊̃n, both with convergence
rate r(n) =

Ò
(n), ◊̂n is asymptotically relatively more e�cient than ◊̃n, if the di�erence

of their asymptotic variance-covariance matrices asyV ar(◊̃n) ≠ asyV ar(◊̂)n is positive
semidefinite (Wooldridge 2010, Definition 3.11). Asymptotic e�ciency plays a role in
chapter 14.

5.5. Tools for asymptotic analysis

5.5.1. Law of Large Numbers (LLN)

A law of large numbers states conditions under which the arithmetic mean converges in
probability or even almost surely to the true mean.

• Khinchin’s Weak Law of Large Numbers (WLLN) Let zt, t = 1, 2, . . . , n, be an IID
sequence of random variables with finite expected value µ. Then, it holds for the arithmetic
mean µ̂n = n≠1 q

n

t=1 zt that

µ̂
P≠æ µ, (5.69a)

or plim(µ̂) = µ. (5.69b)

(See e. g. Davidson (1994, Theorem 23.5) — proof too di�cult.)
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5.5. Tools for asymptotic analysis

• Two versions of LLN

– Weak LLN (WLLN):
µ̂

P≠æ µ.

– Strong LLN (SLLN):
µ̂

a.s.≠æ µ.

• There are also LLN for various non-IID cases, see e. g Davidson (2000, Section 3.2).

• Note that zt can also be a function of another random variable, for example the power of
a random variable or the product of two di�erent random variables.

Example: Estimator of the expected value: If the conditions of one of
the laws of large numbers are satisfied, the arithmetic mean is an consistent
estimator of the expected value.

If a random sample is present and the DGP has a finite expected value, then, for
example, the weak law of large numbers of Khinchin applies

µ̂n = 1
n

nÿ

t=1
yt

P≠æ µ0 or plim
næŒ µ̂n = µ0.

Example: Comparison of two estimators of the expected value using
Monte Carlo simulation

In a Monte Carlo simulation, the estimation properties of the arithmetic mean
(5.59) and the ine�cient mean estimator (5.62) are compared.

Structure:

• DGP

yt = µ0 + ‡0ut, ut = (Át ≠ m)/
Ô

2m, Át ≥ i.i.d.‰2(m) (5.70)
µ0 = 1, ‡0 = 2, m = 1 (5.71)

The density of errors ut is asymmetric because the Át are drawn from a ‰2

distribution with m degrees of freedom and are then standardised.

• R = 10000 realisations of samples with sample sizes n = 10, 50, 100, 500 re-
spectively. Note: The conditions of the weak law of large numbers (LLN) are
fulfilled.

• Calculation of the arithmetic mean and the standard deviation for each sample
size and each estimator

R code, see section A.2, page 329.

R output
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N mu_hat_mean mu_hat_sd mu_tilde_mean mu_tilde_sd
[1,] 10 1.0014164 0.31831308 1.0020431 0.7099616
[2,] 50 0.9991498 0.14162425 0.9960143 0.7054847
[3,] 100 0.9990515 0.09997354 0.9900695 0.6896356
[4,] 500 1.0003874 0.04474699 1.0058432 0.7074540

It can be seen that both estimators are unbiased. The standard deviation of the
alternative estimator mu_tilde (5.62) is larger than the standard deviation of the
arithmetic mean mu_hat for any sample size. Moreover, the standard deviation of
the arithmetic mean becomes smaller as the sample size increases. The first result
illustrates the e�ciency of the arithmetic mean and the second result illustrates
that the arithmetic mean is a consistent estimator.

The distributions of the estimators can be seen in the figures 5.1 and 5.2.
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Figure 5.1.: Histograms of the arithmetic mean (R program see section A.2, page 329) DGP see equation (5.70)

It is noticeable that

• the ine�cient estimator has a skewed distribution (like the errors) regardless
of the sample size, but the density of the arithmetic mean becomes more
symmetric as the sample size increases — and, as will be shown in the next
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5.5. Tools for asymptotic analysis
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Figure 5.2.: Histograms of the ine�cient expected value estimator (5.62) (R program see section A.2, page
329) DGP see equation (5.70)

section, converges to the density of the normal distribution.

5.5.2. Central limit theorems

Preface: In principle, a central limit theorem is of central importance to be able to determine
a limit distribution for an estimator in very general cases. There are di�erent versions of
central limit theorems, which di�er in their assumptions.

Example: Estimator of the expected value:

• If a random sample is available but it is not known which distribution the DGP
has, i.e. which distribution e. g. the return of the DAX has, then the derivation
of the limit distribution via (5.66) does not work.

• Since the existence of an asymptotic variance requires the rate of convergence
r(n) =

Ò
(n), we have to ask against which asymptotic distribution the sequence

of random variables
Ô

n(µ̂n ≠ µ0) converges if yt is, for example, IID but not
normally distributed?
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The answer for this case is provided by the central limit theorem (CLT) of
Lindeberg and Lévy.

• Central limit theorem for IID random variables (Lindeberg-Lévy Theorem) Let
yt ≥ IID(µ0, ‡2

0), t = 1, 2, . . ., |µ0| < Œ, 0 < ‡2
0 < Œ. Then, for the estimator of the

expected value µ̂n = 1
n

q
n

t=1 yt:
Ô

n(µ̂n ≠ µ0) d≠æ N(0, ‡2
0).

Proof: (For a proof idea see, e.g. Hendry (1995, Section A.5)) ⇤

Remarks:

– Alternatively, one can write
Ô

n(µ̂n ≠ µ0) d≠æ z, z ≥ N(0, ‡2
0),

but not (as erroneously in Davidson & MacKinnon (2004, Section 4.5, p. 149))

plim
næŒ

Ô
n(µ̂n ≠ µ0) = z ≥ N(0, ‡2

0),

because this probability limit does not exist; see, for example, Davidson (1994, Section
23.1) for a proof.

– Regardless of the nature of the marginal distribution of yt, the
Ô

n scaled estimator
of the expected value converges in distribution to a normal distribution as
long as yt has a finite variance. The estimator of the expected value is said to be
asymptotically normally distributed.

– Alternative notation of the central limit theorem: Let denote the random variable
Xn = µ̂n. Then the exact probability distribution of the arithmetic mean for the
sample size n is given by

Fn(z) := P (µ̂n Æ z).
The central limit theorem states that the sequence of distribution functions Fn(z)
converges pointwise to the distribution function F (z) = �(z)

lim
næŒ

Fn(z) = �(z).

– The central limit theorem says nothing about how well the asymptotic distribution
approximates the exact distribution Fn(z) for a given sample size n. In order to gain
information about this, computer simulations are generally necessary.

Example: Comparison of two estimators of the expected value using
Monte Carlo simulations (continued from section 5.5.1) The histograms
of the arithmetic mean in figure 5.1 illustrate well the central limit theorem. The
histograms for the ine�cient estimator in figure 5.2 indicate that no central limit
theorem applies. The reason for this is that regardless of the sample size, exactly
two observations are always used in the estimation and thus no CLT can apply.
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5.5. Tools for asymptotic analysis

• Central limit theorem for heterogeneous but stochastically independent random
variables Often the yt are not IID, but are only independently but not identically
distributed, for example, if they have a di�erent variance, yt ≥ (µ0, ‡2

t
), t = 1, 2 . . .. Then

the following holds for the variance of
Ô

nµ̂n,

V ar(
Ô

nµ̂n) = V ar

A
1Ô
n

nÿ

t=1
yt

B

= 1
n

nÿ

t=1
V ar(yt) = 1

n

nÿ

t=1
‡2

t
.

Provided the V ar(yt) satisfy some conditions, e. g 0 < V ar(yt) < c < Œ, for all t = 1, 2, . . .,
a central limit theorem holds

Ô
n(µ̂n ≠ µ0) d≠æ N

A

0, lim
næŒ

1
n

nÿ

t=1
V ar(yt)

B

. (5.72)

Conditions on the sequence of variances are necessary to exclude the following cases:

– For example, if it held for a fixed 0 < a < 1 that V ar(yt) = ‡2
0at æ 0 mit t æ Œ, thenqŒ

t=1 V ar(yt) = ‡2
0

1
1≠a

and thus

V ar(
Ô

nµ̂n) = 1
n

‡2
0

1
1 ≠ a

æ 0 for n æ Œ,

so the variance of
Ô

nµ̂n vanishes asymptotically. Thus of course no (meaningful) limit
distribution is possible.

– If V ar(yt) = ‡2
0t æ Œ were to apply accordingly, then one obtains

V ar(
Ô

nµ̂n) = 1
n

‡2
0
n(n + 1)

2 æ Œ with n æ Œ.

Conditions that ensure that a limit distribution exists are often referred to as regularity
conditions.

Example: Estimator of the expected value: This central limit theorem
is useful when the unconditional variance of DAX returns depends on time, for
example, the day of the week.

• Central limit theorems for vectors

– ˘ Cramér-Wold Device: For a sequence of random vectors xn it holds that

xn

d≠æ x

if and only if for all feasible vectors ⁄ holds:

⁄T xn

d≠æ ⁄T x.
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– Multivariate limit theorem: Given the independently distributed (r ◊ 1) random
vectors vt with expected value µ0 and variance-covariance matrix V ar(vt). Then, under
appropriate regularity conditions, it holds for the estimator of the multivariate expected
value µ̂n = 1

n

q
n

t=1 vt that

Ô
n (µ̂n ≠ µ0) d≠æ N

A

0, lim
næŒ

1
n

nÿ

t=1
V ar(vt)

B

. (5.73)

5.6. Fundamentals of tests

Statistical tests are used

• to test economic hypotheses,

• in model specification and model validation of econometric models (relevant regressor
variables, functional form of the regression function, violation of assumptions,...).

Statistical test:

• Sample-based decision procedure to decide whether a hypothesis must be rejected.

• The hypothesis must relate to properties of probability distributions contained in the model
under consideration.

• There are exactly two alternatives for deciding: not to reject the hypothesis or to reject it.

Components of a statistical test
:

1. Pair of hypotheses

2. Test statistic

3. Decision rule

4. Decision and interpretation

Zu 1.: Two disjoint hypotheses about one or more elements of the parameter vector ◊ œ �,
where ◊ denotes the parameters of the probability distributions under consideration.

– Null hypothesis H0 : ◊ œ �H0 .

– Alternative hypothesis H1 : ◊ œ �H1 .

The union of the two hypotheses �H0 fi �H1 = � covers the entire parameter space �.
(Cf. on parameter space section 5.1.)

Example: Test concerning the expected value of the DAX returns:
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5.6. Fundamentals of tests

– Economic question: Is the average daily return of the DAX zero?

– Statistical test is to be carried out within the framework of the model considered
so far,

yt ≥ NID(µ, ‡2), µ œ R, ‡ œ R+. (5.14)
This assumption defines the set of possible probability distributions: normal
distributions with variance ‡2 > 0 and expected value µ.

– General formulation of the pair of hypotheses concerning the expected value µ:

H0 : µ = µH0 versus H1 : µ ”= µH0 .

In the present case, µH0 = 0 and thus

H0 : µ = 0 versus H1 : µ ”= 0.

– We have not yet said anything about the other model parameter, the variance
‡2. The full formulation of the pair of hypotheses includes the entire parameter

vector ◊ =
A

µ
‡

B

œ � = (R ◊ R+):

H0 : ◊ =
A

µ
‡

B

œ �H0 =
1
{µH0} ◊ R+

2
versus

H1 : ◊ œ �H1 =
1
(R\{µH0}) ◊ R+

2

– If the expected value µ were known, it could be decided immediately whether
the null hypothesis is correct.

– In practice, a decision can only be made on the basis of a sample and an
estimate µ̂(y1, y2, . . . , yn) of the expected value. A statistical test provides this
decision. It should fulfil certain optimality criteria. More on this later.

Zu 2.: A test statistic ⁄ is a function calculated from the sample values y: ⁄ = ⁄(y). Note:
Before observing a sample, a test statistic is a random variable, after observing a sample it
is a realisation of a random variable, i.e. a number.

Zu 3.: A decision rule that determines for which values of ⁄ the null hypothesis H0 is
rejected and for which values the null hypothesis is not rejected. More precisely: The
range of values of ⁄ is divided into two disjoint subranges:

– Rejection region, critical region C If the test statistic ⁄ is within the critical region,
H0 is rejected:

Reject H0 if ⁄ œ C.

– Non-rejection region If the test statistic ⁄ is within the non-rejection region, H0 is
not rejected:

Do not reject H0 if ⁄ ”œ C.

– Critical values: One or more boundaries c between rejection and non-rejection region.
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Note: Instead of the symbol ⁄, the symbol t is typically used for t-tests or the symbol F is
often used for F -tests.

Example: Test concerning the expected value (mean) of DAX returns —
continued:

The null hypothesis can be tested with a t-test as follows. The individual elements
are then derived and justified:

Zu 2.: Test statistic of the t-test:

t(y) = µ̂ ≠ µH0

‡̂µ̂

=

1
1
n

q
n

t=1 yt

2
≠ µH0Ò

1
n≠1

q
n

t=1(yt ≠ ȳ)2 1
n

(5.74)

Zu 3.:

– Rejection region: C = (≠Œ, ≠1.96) fi (1.96, Œ)

– Non-rejection region: (≠1.96, 1.96)

– Critical values: cl = ≠1.96, cr = 1.96.

– Decision rule: Reject H0 if t(y) œ C.

Performing the test:

– Sample: Daily returns of the DAX from 25/03/1993 to 30/09/2015, a
total of 5652 observations (R program see section A.3, page 330, data
dax19930325_20150930.xlsx):

– For H0 : µH0 = 0 and µ̂ = 0.00004130056 and ‡̂µ̂ = 0.00002342752 we get the
test statistic

t(y) = 0.00004130056 ≠ 0
0.00002342752 = 1.762908

– t(y) œ C ∆ Do not reject H0.

What is the probability of a wrong decision?
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5.6. Fundamentals of tests

Properties of a test:

• Type I error: The type I error of a test indicates the probability with which the null
hypothesis H0 is rejected for a sample that has not yet been collected, although H0 is
correct in the population:

Intuitive (sloppy) notation: P (Reject H0|H0 is true)
Exact notation: –(◊) = P (⁄ œ C; ◊) , ◊ œ �H0 . (5.75)

Note: The type I error may depend on ◊!

Example: One-tailed t-test, see later.

• Type II error or —-error: The type II error indicates the probability with which H0 is
not rejected even though H0 is false:

Intuitive (...) notation: P (Do not reject H0|H1 is true)
Exact notation: —(◊) = P (⁄ ”œ C; ◊) , ◊ œ �H1 . (5.76)

• Power function of a test: The power function of a test indicates the rejection probability
for a specific parameter vector ◊ œ �

fi(◊) = P (Reject H0; ◊)
= 1 ≠ P (⁄ ”œ C; ◊) , ◊ œ �.

(5.77)

Note: The power function is defined for the entire parameter space «.

• Power fi of a test: The power of a test indicates the probability fi(◊) of rejecting the null
hypothesis for a specific ◊, if ◊ œ �H1 :

fi(◊) = 1 ≠ —(◊), ◊ œ �H1 .

• Size) of a test: In many cases, the type I error depends on ◊ œ �H0 . The supremum of
the type I errors for all possible ◊ œ �H0 is called the size of a test:

sup
◊œ�H0

P (⁄ œ C; ◊) (5.78)

Determining the critical region C

• Test distribution: P (⁄ Æ x; ◊) — necessary to determine the power function fi(◊) (5.77)
of a test.

– under H0 : P (⁄ Æ x; ◊), ◊ œ �H0 — necessary for determining the critical region C.

– under H1 : P (⁄ Æ x; ◊), ◊ œ �H1 — necessary for determining the power of a test.

• Ideally, the type I error should be as small as possible and at the same time the power
function of a test should be as large as possible. Unfortunately, this is not possible.
Therefore, one bounds the type I error and then wants to maximise the power fi(◊) for all
◊ œ �H1 .
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• Level of significance (level): Therefore, a level of significance – is specified which
bounds the type I error:

P (Reject H0; ◊) = P (⁄ œ C; ◊) Æ – for all ◊ œ �H0 . (5.79)

From this condition, the rejection region C = C(–) can be determined.

• If there are several tests to choose from that meet the significance level –, then
choose the test that maximises the power function fi(◊) for ◊ œ �H1 .

• See the following example for the derivation of the t-statistic and the relevant critical region.
Tests for testing hypotheses with multiple parameters are derived in 11.3.2.

Example: test concerning the expected value — continued:

Deriving the test statistic for testing a null hypothesis regarding the expected
value with a known standard deviation and determining the critical region

1. Under the assumptions made, the estimator of the expected value is normally
distributed, see (5.61)

µ̂(y) ≥ N

A

µ,
‡2

n

B

. (5.61)

2. However, the distribution depends on unknown parameters. This is avoided by
standardizing:

µ̂ ≠ µ

‡/
Ô

n
≥ N(0, 1) (5.80)

Case A: ‡ = ‡0 known: Under H0 : µ = µH0 , µ̂≠µ

‡0/
Ô

n
can be calculated and

one obtains a standard normally distributed test statistic

z(y) = µ̂ ≠ µH0

‡0/
Ô

n
≥ N(0, 1). (5.81)

Case B: ‡ unknown: see general derivation of (5.74) in the context of the
OLS regression model in section 11.3.1.

3. Determining the critical region C for case A (case B proceeds analogously):

a) Determining the significance level –.

b) Figure of the probability density of z(y) under H0:
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5.6. Fundamentals of tests

0 z

f(z)

critical value c

Probability of
rejection α 2

Probability of
rejection α 2

Non−rejection region of H0Rejection region of H0 Rejection region of H0

When should H0 be rejected?

Intuition: If z is very large (or very small),

i. then the estimated expected value µ̂ is far from µH0 (under H0). This
could provide evidence for H1 : µ ”= µH0 . One should then reject H0.

ii. Or the standard deviation ‡µ̂ = ‡0/
Ô

n of the estimated deviation is
small compared to the di�erence µ̂ ≠ µH0 .

That is, one should reject H0 if z is very large or very small.

The critical region is therefore

C = (≠Œ, cl) fi (cr, Œ).

Determine the critical values cl, cr using the given significance level (5.79).
Usually, the given significance level – is divided symmetrically on both
sides. The type I error is smaller than or equal to the significance level – if
the following applies

P (z < cl; µH0 , ‡0) Æ –/2 and P (z > cr; µH0 , ‡0) Æ –/2,
(5.82)

F (z; µH0 , ‡0) Æ –/2 and 1 ≠ F (z; µH0 , ‡0) Æ –/2.
(5.83)

Under H0, z is standard normally distributed (2.5), such that

�(cl) Æ –/2 and (1 ≠ �(cr)) Æ –/2. (5.84)

Ideally, the equal sign should apply because then the significance level
controls the type I error exactly. The critical value cl just corresponds to
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the –/2-quantile (2.9) of the standard normal distribution

cl = q–/2 = �≠1(–/2), cr = q1≠–/2 = �≠1(1 ≠ –/2).

Due to the symmetry of the normal distribution density, cl = ≠cr = ≠c is
obtained. Thus, for – = 0.05 one obtains the critical values ≠c = ≠1.96
and c = 1.96, respectively. See e. g. Table G.1 in Wooldridge (2009)) or
calculate c with the R command c <- qnorm(p=1-alpha/2), where alpha
indicates the level of significance.

Calculating the power

• General procedure: First determine the power function, i. e. the density function of the
test statistic for an arbitrary ◊ œ «. Since the power of the test generally depends on ◊,
one calculates the power of the test for all or selected ◊ œ «H1 . The power is calculated by
determining the area under the density function in the critical region.

Example: Test concerning the expected value — continued:

In the following, ‡0 is still assumed to be known:

– Under both H0 and H1, given the expected value µ0 and the standard deviation
‡0 of the DGP, the following applies according to (5.80),

µ̂ ≠ µ0

‡0/
Ô

n
≥ N(0, 1).

By expanding one obtains

µ̂ + µH0 ≠ µH0 ≠ µ0

‡0/
Ô

n
= µ̂ ≠ µH0

‡0/
Ô

n
+ µH0 ≠ µ0

‡0/
Ô

n
= µ̂ ≠ µH0

‡0/
Ô

n
¸ ˚˙ ˝

z(y)

≠ µ0 ≠ µH0

‡0/
Ô

n
¸ ˚˙ ˝

m

and thus one gets

z(y) = µ̂ ≠ µH0

‡0/
Ô

n
≥ N

A
µ0 ≠ µH0

‡0/
Ô

n
, 1

B

,

since X ≥ N(m, 1) is equivalent to X ≠ m ≥ N(0, 1).

– Conclusion: If H1 holds, the density as well as the distribution of the test
statistic z(y) is shifted by (µ0 ≠ µH0)/(‡0/

Ô
n).

– In the figure of the density under H1 (for a specific µ0 ”= µH0) the power is
obtained from the sum of the two shaded areas: fi(◊) = P (z < ≠c; ◊) + P (z >
c; ◊), ◊ œ �H1 .
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0 z

f(z)

µ − µ0

σµ̂

critical value c

Probability of−
rejection

Power = sum of rejection probabilities

Probability of
rejection

Non−rejection region of H0Rejection region of H0 Rejection region of H0

– For a given ‡µ̂, the power of the test increases with the di�erence between the
value of the null hypothesis µH0 and the true value µ0. It is then “easier” to
reject a false null hypothesis.

– For given parameter values ◊ œ �, the power function can be calculated and
plotted.
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Figure 5.3.: Power function for a test concerning the expected value (R program see section A.3, page 333)
Parameters used: level of significance – = 0.05 (red horizontal line), µ0 ≠ µH0 œ [≠2, 2], n = 50,
‡ = 1 (black line), ‡ = 2 (blue line).

• Properties of the power : The power of a test increases with

– greater distance between correct value and null hypothesis and/or

– decreasing standard deviation ‡ and/or

– the sample size n.

Conclusion: Statistical tests require at least knowledge of the probability distribution of the
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Figure 5.4.: Illustration of the power function for z given – = 0.05 on a grid (R program see section A.3, page
334) Parameter range µ0 ≠ µH0 œ [≠1, 1], ‡µ̂ = ‡0/

Ô
n œ [1/

Ô
20, 1/

Ô
1000]

test statistic under H0, but to determine the power, knowledge of the probability distribution
under H1 is also required.

Test concerning the expected value with unknown variance: t-statistic (5.74) (case
B, page 129)

In practice, the variance ‡2 is unknown. The general procedure is illustrated by the test
concerning the expected value.

Example: Test concerning the expected value — continued:

Solution: The variance ‡2 is estimated using

s2 = 1
n ≠ 1

nÿ

t=1
(yt ≠ ȳ)2

(cf. (9.25)). Substituting s into (5.80) results in

‡̂µ̂ = sÔ
n

and the so-called t-statistic (5.74)

t(y) = µ̂ ≠ µH0

‡̂µ̂

=

1
1
n

q
n

t=1 yt

2
≠ µH0Ò

1
n≠1

q
n

t=1(yt ≠ ȳ)2 1
n

,
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5.6. Fundamentals of tests

which has already been used for the test of the expected value. This t-statistic is
no longer normally distributed. In section 11.3.1 it is shown that this t-statistic
follows a t-distribution with n ≠ 1 degrees of freedom (tn≠1 for short).

Thus

t(y) = µ̂ ≠ µH0

‡̂µ̂

≥ tn≠1.

For the properties of the (symmetrical) t-distribution (2.36) see Part I. Mathemat-
ical Pre-course. To obtain the critical values

P (t < ≠c|H0) = –

2 and P (t > c|H0) = –

2 ,

one can look for example in Table G.2 in Wooldridge (2009) or calculate them
with the R command c <- qt(p=1-alpha/2,df=n-k), where alpha indicates the
level of significance and k indicates the number of the estimated parameters, here
k = 1.

One- and two-tailed hypothesis tests with the t-test

The possibility of one-tailed tests exists when one element ◊j of the parameter vector ◊, such
as the expected value µ, is to be tested. For both the one-tailed and the two-tailed test, the
t-statistic is generally

t(y) = ◊̂j ≠ ◊j,H0

‡̂
◊̂j

.

• Two-tailed tests

H0 : ◊j = ◊j,H0 versus HH1 : ◊j ”= ◊j,H0 .

• One-tailed tests

– Right-tailed test

H0 : ◊j Æ ◊j,H0 versus H1 : ◊j > ◊j,H0

Note: Often, as in Wooldridge (2009), one reads H0 : ◊j = ◊j,H0 versus H1 : ◊j > ◊j,H0 .
This notation is not precise, since every possible parameter value must belong either to
H0 or to H1. However, this is not clear from this notation.

� Critical value:

Density of the t-test statistic for ◊j,0 = ◊j,H0 , where ◊j,0 denotes the parameter value
of the DGP:
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0 t

f(t)

critical value c

Probability of
rejection α

Rejection region of H0Non−rejection region of H0

No rejection region is needed on the left-hand side because all ◊j < ◊j,H0 are elements
of H0 and thus belong to the non-rejection region.

Type I error and size of a one-tailed test: Assume that ◊j,0 < ◊j,H0 holds for
◊j,0 of the DGP such that H0 applies. Since the position of the density of the test
statistic t(y) depends on ◊j,0≠◊j,H0

‡
◊̂j

(cf. Figure on page 131 for ◊j = µ), the density for
◊j,0 ≠ ◊j,H0 < 0 is to the left of the density for ◊j = ◊j,H0 . Accordingly, the shaded
area, i.e. the type I error, is smaller in the first case than in the second case. Thus,
the type I error for ◊j = ◊j,H0 just corresponds to the size (5.78) of the test. Since the
chosen level of significance – specifies the size of a test, the critical value for ◊j = ◊j,H0

is therefore determined.

� Decision rule:
t > c ∆ Reject H0.

Example: Test concerning the expected value (mean) of the DAX
returns — continued: Are the DAX returns positive?

� Pair of hypotheses:

H0 : µ Æ 0 versus H1 : µ > 0

� Determining the critical value: For – = 0.05, the critical value 1.646179 is ob-
tained from the t-distribution with 1151 degrees of freedom c <- qt(p=0.95,df=1151).

� Calculation of the test statistic: As in the case of the two-tailed test (5.74):

t(y) = 0.00004130056 ≠ 0
0.00002342752 = 1.762908

� Test decision: Since
t = 1.763 > c = 1.645,
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5.6. Fundamentals of tests

the null hypothesis is rejected. There is statistical evidence for a positive
expected value of the daily DAX returns.

� What test result do you get for a significance level of 1%?

– Left-tailed test
H0 : ◊j Ø ◊j,H0 versus H1 : ◊j < ◊j,H0 .

Density of the t-test statistic for ◊j,0 = ◊j,H0 :

0 t

f(t)

critical value c

Probability of
rejection α

Rejection region of H0 Non−rejection region of H0

Proceed as for right-tailed alternative hypothesis, only mirror-inverted.

• Conclusion: Di�erence of one-tailed and two-tailed tests: area of the given significance
level is one-tailed concentrated or two-tailed halved.

• Advantage of one-tailed tests

– Since statistical tests cannot confirm hypotheses, but only reject them, the
alternative hypothesis is usually chosen to reflect the conjecture that is to be statistically
“supported”.

Thus, if the conjecture concerns only one side because the other side is not of interest or
can be ruled out for economic reasons, a one-tailed test is possible.

– With the one-tailed test, the given significance level can be concentrated on one side, so
that the critical value becomes smaller in absolute value compared to the two-tailed test
and a rejection of the null hypothesis becomes more likely and thus the power increases
if the null hypothesis is false in the population.

Example: Test concerning the expected value (mean) of the DAX
returns — continued: If one is only interested in whether the DAX returns
are positive, a one-tailed test as above is possible. While H0 : µ = 0 in the
two-tailed test given a significance level of 0.05 cannot be rejected, this is possible
in the right-tailed test.

– Important: However, a one-tailed test is only justified if the side included in the null
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hypothesis is not interested or can be excluded for economic reasons.

p-values

• For a given sample, the largest significance level can be calculated for each test statistic
at which the calculated test statistic would just not have led to a rejection of the null
hypothesis. If the significance level were increased further, the null hypothesis would be
rejected. This probability is called p-value (probability value).

• It is also said that the p-value indicates the smallest significance level at which the null
hypothesis can just be rejected. See Davidson & MacKinnon (2004, Section 4.2, pages
126-127) or Wooldridge (2009, Section 4.2, p. 133).

• In the case of a one-tailed t-test with a right-tailed alternative, we get

P (X > t(y)|y, ◊j,H0) := p, (5.85a)
or P (X Æ t(y)|y, ◊j,H0) = 1 ≠ p, . (5.85b)

since P (X > t(y)|y, ◊j,H0) = 1 ≠ P (X Æ t(y)|y, ◊j,H0).

0 t

f(t)

p−value

t̂

α

• Decision rule with p-values: Instead of checking whether the test statistic is in the
critical region, one can compare the p-value with the significance level:

Reject H0, if the p-value is smaller than the significance level –.

Left-tailed test: p = P (t < t(y)|y, ◊j,H0),
Right-tailed test: p = P (t > t(y)|y, ◊j,H0),
Two-tailed test: p = P (t < ≠|t(y)||y, ◊j,H0) + P (t > |t(y)||y, ◊j,H0)

• Many computer programs (such as R) routinely provide the p-value for

H0 : ◊j = 0 versus H1 : ◊j ”= 0.
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5.6. Fundamentals of tests

Literature: Davidson & MacKinnon (2004, Section 4.2) or for a start Wooldridge (2009,
Appendix C.6).
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6. The ordinary least squares estimator: Derivation and an
application

Depending on the DGP and the properties of the data of the sample, di�erent estimators are
used to estimate the parameters of the multiple linear regression model

yt = —1xt1 + —2xt2 + · · · + —kxtk + ut. (5.24)

Review of section 5.4: An estimator for the parameter vector — is a vector-valued function
—̃(X1, y1, . . . , Xn, yn) of the sample {(Xt, yt), t = 1, . . . , n}.

Important estimators for the multiple linear regression model

• Ordinary least squares estimator (OLS estimator)
∆ all chapters up to and including chapter 11

• Generalized least squares estimator (GLS estimator)
=∆ chapter 14

• Instrumental variables estimator (IV estimator)
=∆ master course Advanced Econometrics

• Generalized method of moment estimator (GMM estimator)
=∆ master course Advanced Econometrics

• Maximum likelihood estimator (ML estimator)
=∆ master course Advanced Econometrics

The estimators di�er in their assumptions, properties and possible applications.

6.1. Vector and matrix representation of the multiple linear regression
model

• Notation:

Xt =
1
xt1 · · · xtk

2
, — =

Q

cccca

—1
—2
...

—k

R

ddddb
.



6.1. Vector and matrix representation of the multiple linear regression model

y =

Q

cccca

y1
y2
...

yn

R

ddddb
, X =

Q

cccca

x11 x12 . . . x1k

x21 x22 . . . x2k

... ... . . . ...
xn1 xn2 . . . xnk

R

ddddb
, u =

Q

cccca

u1
u2
...

un

R

ddddb
.

• Matrix representation

– for one observation t of the sample:

yt = Xt— + ut. (5.25)

– for the total sample
y = X— + u, (6.1)

• Vector representation:

The regression model for the total sample (6.1) can also be represented as addition of
vectors:

y = x1—1 + x2—2 + · · · + xk—k + u, (6.2)

where the following vectors of variables each consist of all n observations of the sample

y =

Q

cccca

y1
y2
...

yn

R

ddddb
, xi =

Q

cccca

x1i

x2i

...
xni

R

ddddb
, i = 1, . . . , k. (6.3)

Further matrix notation for later

X =

Q

cccca

x11 x12 . . . x1k

x21 x22 . . . x2k

... ... . . . ...
xn1 xn2 . . . xnk

R

ddddb
=

1
x1 x2 · · · xk

2
=

Q

cccca

X1
X2
...

Xn

R

ddddb

XT =

Q

cccca

x11 x21 . . . xn1
x12 x22 . . . xn2
... ... . . . ...

x1k x2k . . . xnk

R

ddddb
=

Q

cccca

xT

1
xT

2
...

xT

k

R

ddddb
=

1
XT

1 XT

2 · · · XT

n

2
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XT X =

Q

cccca

x11 x21 . . . xn1
x12 x22 . . . xn2
... ... . . . ...

x1k x2k . . . xnk

R

ddddb

Q

cccca

x11 x12 . . . x1k

x21 x22 . . . x2k

... ... . . . ...
xn1 xn2 . . . xnk

R

ddddb
(6.4a)

=

Q

cccca

q
n

t=1 x2
t1

q
n

t=1 xt1xt2 · · · q
n

t=1 xt1xtkq
n

t=1 xt2xt1
q

n

t=1 x2
t2 · · · q

n

t=1 xt2xtk

... ... . . . ...q
n

t=1 xtkxt1
q

n

t=1 xtkxt2 · · · q
n

t=1 x2
tk

R

ddddb
(6.4b)

=

Q

cccca

xT

1 x1 xT

1 x2 · · · xT

1 xk

xT

2 x1 xT

2 x2 · · · xT

2 xk

... ... . . . ...
xT

k
x1 xT

k
x2 · · · xT

k
xk

R

ddddb
(6.4c)

=
nÿ

t=1
XT

t
Xt (6.4d)

6.2. The OLS estimator for multiple linear regression models

• Ordinary least squares estimator (OLS estimator) of — in the multiple linear
regression model (6.1):

—̂ =
A

nÿ

t=1
XT

t
Xt

B≠1 nÿ

t=1
XT

t
yt (6.5a)

—̂ =
1
XT X

2≠1
XT y. (6.5b)

Derivation in matrix notation in section 6.2.2.

• Regression model of the sample:

– Sample regression function
ŷ = X—̂ (6.6)

– Fitted values/OLS estimates/predicted values: ŷ

– Residuals: u(—̃) = y ≠ X—̃

– OLS residuals: û = y ≠ X—̂

In the following, the OLS residuals û are often simply referred to as residuals.

• Properties of the OLS estimator for the simple multiple regression model

– The statistical estimation properties depend on the type of data generation, respectively
on the properties of the population. They can never be verified because the data
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6.2. The OLS estimator for multiple linear regression models

generation is unobservable. Their analysis requires the methods of probability theory
=∆ chapter 9 and following.

– The numerical properties always apply and are independent of the data generation.
They can be investigated by algebraic or geometric methods =∆ chapter 7.

6.2.1. Derivation of the OLS estimator as a moment estimator

• Basis of the moment estimator: Law of large numbers (LLN), cf. section 5.5.1.

• Simplest case of (5.34):

yt = —1 + ut, E[ut] = 0, (6.7a)

such that
—1 = E[yt] (6.7b)

just corresponds to the expected value (the first moment) of yt.

• Under certain conditions (e. g. presence of a random sample, cf. (5.69)), the law of large
numbers justifies estimating an expected value E[yt] with the arithmetic mean 1

n

q
n

t=1 yt

of a sample y1, . . . , yn,
‚E[yt] = 1

n

nÿ

t=1
yt,

so that the accuracy of the estimator increases with sample size. More on this in section
5.5.1.

• —1 can thus be estimated by estimating the expected value E[yt] with the arithmetic mean

—̂1 = 1
n

nÿ

t=1
yt.

• This principle also works for the OLS estimator of the multiple linear regression model
because of (5.34), since the expected values E

Ë
XT

t
Xt

È
and E

Ë
XT

t
yt

È
in (5.34) and (5.40),

respectively, can again be estimated by calculating the mean values of the matrices XT

t
Xt

and the vectors XT

t
yt, respectively. One obtains:

‚E
Ë
XT

t
Xt

È
= 1

n

nÿ

t=1
XT

t
Xt

‚E
Ë
XT

t
yt

È
= 1

n

nÿ

t=1
XT

t
yt

—̂ =
A

nÿ

t=1
XT

t
Xt

B≠1 nÿ

t=1
XT

t
yt (6.5a)

=
1
XT X

2≠1
XT y. (6.5b)

142



Here, 1/n was cancelled out in the penultimate row. The matrix representation (6.5) of
the OLS estimator in the last row follows from the application of the matrix rules.

Assumptions used in the derivation of (6.5):

1. There is a random sample.

2. The matrix XT X is invertible — this requires rk(X) = k.

Thus, —00, as defined in (5.40), is estimated in any case.

If —̂ is to estimate the correct parameter vector —0 of the DGP, (5.34) must hold.

4. For (5.34) to hold, it is also necessary (see section 5.3) that

a) the multiple linear regression model is correctly specified, i. e. the DGP is included
in (??), and

b) the expected value of the errors given the regressors are zero, i. e. E[ut|Xt] = 0, so
that (5.33) holds.

• Literature: Davidson & MacKinnon (Cf. 2004, Section 1.5).

6.2.2. Least squares derivation of the OLS estimator

• Given is the multiple linear regression model (6.1)

y = X— + u.

• Idea of the ordinary least squares estimator: Minimise the Sum of Squared Residuals
(SSR), i. e. the objective function

S(—) =
nÿ

t=1
ut(—)2 =

nÿ

t=1
(yt ≠ Xt—)2 . (6.8)

This objective function is obtained by estimating the statistical risk (5.48) based on the
quadratic loss function (5.46), i.e. (5.42), with the arithmetic mean.

• A possible alternative to the OLS objective function (6.8): Minimising the sum of
absolute values

SM(—) =
nÿ

t=1
|ut(—)| =

nÿ

t=1
|yt ≠ Xt—| (6.9)

provides estimate of the conditional median, i. e. the conditional 50% quantile. This
objective function is obtained by estimating the statistical risk (5.48) based on the absolute
value of the estimation error (5.46) with the arithmetic mean.
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6.3. Empirical analysis of trade flows: part 1 — a brief overview

• Residual sum of squares in matrix notation:

S(—) =
nÿ

t=1
ut(—)2

= u(—)T u(—)
= (y ≠ X—)T (y ≠ X—)
= yT y ≠ 2yT X— + —T XT X—.

Minimise: Derivative with respect to —, setting equal to zero, ...

• Derivation of the OLS estimator in matrix algebra, see section 1.13 for calculation rules:

– From the vector of the first-order partial derivatives

ˆS(—)
ˆ—

= ≠2XT y + 2XT X—,

one obtains by setting the equation to zero the first-order conditions (foc)

XT X—̂ = XT y. (6.10)

These are also called the normal equations.

– If XT X is invertible — this requires rk(X) = k —, the OLS estimator (6.5)

—̂ = (XT X)≠1XT y

is obtained again.

– —̂ is an unique minimum of the objective function S(—) if for the rank rk(X) of the
matrix X, it holds that: rk(X) = k.

• For the interpretation of the OLS estimator —̂ see the end of section 5.3 and the later
chapter 8.

6.3. Empirical analysis of trade flows: part 1 — a brief overview

(A simplified version in some parts can be found in the course material for the bachelor course
Introduction to Econometrics in chapter 1 and following.)

The following steps correspond to the section 4.3 Components of an empirical analysis

I. Economic analysis part

I.1 Scientific issue:

• Identify the factors that a�ect imports to Germany and quantify their impact.
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• A first, rough (empirical) attempt:

Data: Imports to Germany from 54 countries of origin in 2004 (in current US dollars)

Data description Unit Abbreviation Source
Imports from Germany current

US
dollars

trade_0_d_o UN COMTRADE

Country of origin GDP data current
US
dollars

wdi_gdpusdcr_o World Bank - World De-
velopment Indicators

(See Appendix C for detailed data descriptions. )

R code to generate the scatter plot in Figure 6.1:

The following R code is part of the R program in section A.4, page 333. Remark: The
indented commands are only necessary if a PDF file is to be generated.
################################################################################
# Start main program
################################################################################
save.pdf <- 1 # 1=create PDFs of graphs, 0=otherwise

# The following libraries are loaded during the process: car,lmtest

# If these are not installed, they will be installed first:
if (!require(car)){

install.packages("car")
}
if (!require(lmtest)){

install.packages("lmtest")
}

# Determination of the working directory
# in which the R program and the data are located
WD <- getwd() # Determine the directory of the R file and
setwd(WD) # set it as working directory

# Read the data as data frame
daten_all <-read.table("importe_ger_2004_ebrd.txt", header = TRUE)
# Assign the variable names and
# eliminate the observation export country: GER, import country: GER.
attach(daten_all[-20,])

# To try out, if importe_ger_2004_ebrd.txt has already been read in
stats(trade_0_d_o)

################################################################################
# Section 6.3
################################################################################

############# Scatterplot with (linear) regression line #####################
# I.1 Aim/scientific issue: first empirical attempt

# Define file name for output in PDF format
if (save.pdf) pdf("plot_wdi_vs_trade.pdf", height=6, width=6)

# OLS estimation of a simple linear regression model, stored in ols
ols <- lm(trade_0_d_o ~ wdi_gdpusdcr_o)
# Scatterplot of the two variables
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6.3. Empirical analysis of trade flows: part 1 — a brief overview

plot(wdi_gdpusdcr_o, trade_0_d_o, col = "blue", pch = 16)
# Plot the linear regression line using abline
abline(ols, col = "red")
# Add a legend
legend("bottomright", "Lineare Regression", col = "red", lty = 1, bty = "n")

# Close device
if (save.pdf) dev.off()

Listing 6.1: ./R_code/4_�_Beispiel_Handelsstroeme_eng.R
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Figure 6.1.: Scatterplot on trade flow data versus GDP

– Some questions:

– What do you see?

– Is there a relationship?

– If so, how can it be quantified?

– Does a causal relationship exist - which
variable determines which?

– How do imports from the US change if
US GDP changes by 1%?

– Are there other relevant factors that de-
termine imports, e. g. distance?

– Is it possible to forecast future trade
flows?

– How do we place the straight line
through the point cloud?

– What are the properties of the fitted
straight line?

– What do we do with the other relevant
factors that were neglected in the current
analysis?

– What criteria does one choose to identify
a possible relationship?
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– Is the possible relationship really linear? – And: how much may the results di�er
for another sample, e. g. for 2003?

I.2 Economic Model: Simplest form of a gravity equation:

• Short introduction to gravity equations: e. g. in Fratianni (2007). A theoretical foundation
of the gravity equation can be found in Anderson & Wincoop (2003).

• Under idealised assumptions such as perfect specialisation of production, identical consump-
tion preferences in the countries, no transport and trade costs, trade flows between pairs of
countries are explained as a function of the respective income of the paired countries and
their distance from each other:

Mijt = A0Y
–1

it
Y –2

jt
d–3

ij
(6.11)

Mijt :Export from country i to country j in period t

Yit :Real income in country i in period t

dij :Distance between country i and country j (di�erent measures
possible)

• From the economic theory of gravity equations, see Fratianni (2007), arise the hypotheses

– that –1, –2 > 0, –3 < 0 and,

– under certain conditions, the hypothesis that GDP elasticities are equal to 1

–1 = –2 = 1.

These hypotheses can be statistically tested if suitable data are available.

• Double index ij can be converted into one index l.

• Simplification: Considering only one time period and one direction, namely
imports of Germany in 2004. A gravity equation simplified in this way reads as follows

Importsi = e—1Y —2
i

d—3
i

. (6.12)

By logarithmising we obtain

ln(Importsi) = —1 + —2 ln(Yi) + —3 ln(di). (6.13)

Interpretation of the parameters, cf. (8.2):

– —2: GDP elasticity of imports.

– —3: Distance elasticity of imports

An economic hypothesis:

The GDP elasticity of imports is 1: —2 = 1.
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6.3. Empirical analysis of trade flows: part 1 — a brief overview

I.3 Data availability

For our example, all available data are listed in Appendix C including detailed data descriptions.

II. Econometric model:

1. Selection of a class of econometric models

• Choice of class multiple linear regression models: It is assumed that the logarithmic
theoretical model (6.13) after extension by country-specific characteristics and a stochas-
tic error term correctly specifies the systematic part, cf. section 5.3. Together with
the unsystematic part (disturbance term) one obtains a multiple linear regression
model

ln(Mijt) = —1 + —2 ln Yit + —3 ln Yjt + —4 ln dij + Fijt—5 + uij, (6.14)
Fij : specific characteristics for exports from i to j.

• Consideration of di�erent periods requires panel data models, see e. g. Davidson &
MacKinnon (2004, Chapter 7.8).

• The restriction to imports (6.12) to Germany and cross-sectional data results in

ln(Importsi) = —1 + —2 ln(GDPi) + —3 ln(Distancei) + Fi—5 + ui. (6.15)

• Note: Since the variables in Fi are not yet chosen, many regression models are conceivable,
each with di�erent variables satisfying (6.15). Since at least all models are multiple
linear regression models, this is referred to as the choice of a model class.

2. Procuring data: Collecting a sample

• Which goods should be included in imports?

• How to measure the distance between countries?

• What variables should be included in Fi? Possible (and available) variables: openness,
population, area, colonial past.

• How to measure openness?, etc.

A sample with a large number of alternative variables is available for the following estima-
tions. See Appendix C for detailed data descriptions.

Important: Variable selection and measurement of the variables can substan-
tially influence empirical results.

3. Specifying, estimating and selecting an econometric model

• First, we neglect all variables in Fi and consider a linear regression model with GDP
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and distance as explanatory variables: Model 2:

ln(Importsi) = —1 + —2 ln(GDPi) + —3 ln(Distancei) + ui. (6.16)

(Model 1 only includes GDP as a regressor and is considered in section 10.3.)

• Estimating model 2 with the ordinary least squares estimator (OLS estimator):

R code (Extract from the R program in section A.4)
# The numbering of the regression models is based on
# the models in the script, section 10.3

# Run a linear regression and save the results as an object
mod_2_kq <- lm(log(trade_0_d_o) ~ log(wdi_gdpusdcr_o) + log(cepii_dist))

# Display of the regression results
summary(mod_2_kq)

Listing 6.2: ./R_code/4_�_Beispiel_Handelsstroeme_eng.R

R output
Call:
lm(formula = log(trade_0_d_o) ~ log(wdi_gdpusdcr_o) + log(cepii_dist))

Residuals:
Min 1Q Median 3Q Max
-1.99289 -0.58886 -0.00336 0.72470 1.61595

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.67611 2.17838 2.147 0.0371 *
log(wdi_gdpusdcr_o) 0.97598 0.06366 15.331 < 2e-16 ***
log(cepii_dist) -1.07408 0.15691 -6.845 1.56e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9284 on 46 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.8838, Adjusted R-squared: 0.8787
F-statistic: 174.9 on 2 and 46 DF, p-value: < 2.2e-16

4. Validating the estimated model

Is the model correctly specified?

a) Are variables missing?

b) Is the relationship really linear in the logarithms?

c) Are the assumptions for using the OLS estimator fulfilled? Is the OLS estimator
actually suitable for estimating (6.16)?

Re a): First check: Do the parameter estimates change when additional variables are
included in the regression model, e. g. openness?
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6.3. Empirical analysis of trade flows: part 1 — a brief overview

Model 3a:

ln(Imports) = —1 + —2 ln(GDP ) + +—3 ln(Distance) (6.17)
+ —4 Openness + —6 ln Area + u. (6.18)

R code (Extract from the R program in section A.4)
# using the formula command
mod_3a_formula <- log(trade_0_d_o) ~ log(wdi_gdpusdcr_o) + log(cepii_dist) +

ebrd_tfes_o
mod_3a_kq <- lm(mod_3a_formula)
# Display the regression results of the second linear regression model
summary(mod_3a_kq)

Listing 6.3: ./R_code/4_�_Beispiel_Handelsstroeme_eng.R

R output
Call:
lm(formula = log(trade_0_d_o) ~ log(wdi_gdpusdcr_o) + log(cepii_dist) +
ebrd_tfes_o)

Residuals:
Min 1Q Median 3Q Max
-2.1999 -0.5587 0.1009 0.5866 1.5220

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.74104 2.17518 1.260 0.2141
log(wdi_gdpusdcr_o) 0.94066 0.06134 15.335 < 2e-16 ***
log(cepii_dist) -0.97032 0.15268 -6.355 9.26e-08 ***
ebrd_tfes_o 0.50725 0.19161 2.647 0.0111 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8731 on 45 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.8995, Adjusted R-squared: 0.8928
F-statistic: 134.2 on 3 and 45 DF, p-value: < 2.2e-16

Is the di�erence in estimates between the two model specifications relevant? A t-test can
be used to check, see chapter 11.

Instead of the variable openness or simply as an additional variable, the variable area could
be used. The selection of a model can be done with model selection procedures, see section
10.1.

Re b) and c): Test procedures for model diagnostics are discussed in chapter 15.

5. Using the validated model

If the model validation reveals no more problems, then we can use the model:

• Interpretation of the parameters of the model. See sections 8.1 and 8.4 for interpretation
of parameters in di�erently specified models.

• Conducting hypothesis tests:
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– Is there a causal relationship between imports and economic output of the exporting
country? The condition for this is that —2 ”= 0.

– Testing the hypothesis already formulated: Is the GDP elasticity of imports equal to
one?

– Corresponding tests are carried out in the chapter on asymptotics and testing in part
3 in section 11.7.

• Predictions

Systematic continuation of Empirical analysis of trade flows: part 1 in the model
specification chapter with part 2 in section 10.3.
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7. The ordinary least squares estimator and its geometric
interpretation

Multiple linear regression model in matrix representation for the total sample

y = X— + u. (6.1)

OLS estimator

—̂ =
1
XT X

2≠1
XT y. (6.5)

For a better understanding of the OLS estimator it is very helpful to look at the geometry
of the OLS estimator. This is done in two steps:

1. Interpretation of the normal equations (6.10) as orthogonality conditions =∆ section 7.1.1.

2. Interpretation of the so-called projection matrices PX und MX =∆ section 7.1.2

The projection matrices PX and MX occur when predicting the dependent variable y
and when calculating the OLS residuals:

ŷ = X—̂ = X (XT X)≠1XT y
¸ ˚˙ ˝

—̂

:= PXy, (7.1)

û = y ≠ ŷ
= y ≠ X(XT X)≠1XT y = (In ≠ X(XT X)≠1XT )y := MXy. (7.2)

Definition of the projection matrices:

PX := X
1
XT X

2≠1
XT , (7.3)

MX := I ≠ PX. (7.4)

Application examples of the projection matrices PX and MX in this chapter:

• Decomposition (7.15) of the Total Sum of Squares: yT y = ŷT ŷ + ûT û

• Scaling of Xt irrelevant for fitted values.

• Frisch-Waugh-Lovell theorem and partialling-out

• Coe�cients of determination



• Analysis of the impact of possible outliers on the OLS estimator (6.5)

—̂ = (XT X)≠1XT y

Applications of the projection matrices in the following chapters:

• Calculation of the variance of an estimator of a single parameter —j (9.15) in section 9.3

• ‰2-distribution in section 2.9.2.

• Derivation of the distribution of the t-statistic (11.14) in section 11.3.1

• Derivation of the distribution of the F -statistic (11.28) in section 11.3.2

• Derivation fixed-e�ects estimator for panel data

7.1. The geometry of the OLS estimator

Reminder: Vector representation of the multiple linear regression model:

• The regression model (6.1) corresponds to a addition of vectors

y = x1—1 + x2—2 + · · · + xk—k + u (6.2)

• Accordingly, the following applies to the regression model of the sample

y = x1—̂1 + x2—̂2 + · · · + xk—̂k + û, (7.5)

where for the OLS residuals û will be shown:

xT

i
û = 0, i = 1, . . . , k, (7.6b)

7.1.1. Orthogonality conditions: Proof, Interpretation

Orthogonality conditions:

XT û = 0, (7.6a)
xT

i
û =< xi, û > = 0, i = 1, . . . , k. (7.6b)

Proof: From the normal equations (6.10)

XT X—̂ = XT y

follows
XT

1
y ≠ X—̂

2

¸ ˚˙ ˝
û

= 0
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7.1. The geometry of the OLS estimator

and hence (7.6a).

For the i-th row, accordingly

xT

i
(y ≠ X—̂) = 0, i = 1, . . . , k,

applies and thus (7.6b). ⇤

Note: In contrast, the following applies to the disturbance terms u in general, (cf.
(1.2))

xT

i
u = ||xi|| ||u|| cos(◊), i = 1, 2, . . . , k,

where || · || measures the length (Euclidean norm) of a vector and ◊ measures the angle between
the two vectors xi and u. The latter is generally not 90 degrees, so the product is generally
not zero.

Which magnitudes are in which spaces?

• Every linear combination of regressors Xd with a (k ◊1) vector d lies in the subspace
of the regressors ”(X), thus also the vector of fitted values X— with known — and
the vector of the estimated fitted values X—̂.

– Reminder:
Every linear combination of the columns of a matrix X lies in the subspace ”(X) spanned
by the columns of the matrix X, cf. (1.6).

– This also applies to the regressor matrix X, so that

X— =
kÿ

i=1
xi—i œ ”(X) µ En

for any — is contained in the subspace of regressors ”(X).

– This also applies to the fitted values ŷ

ŷ = X—̂ œ ”(X).

• Due to (7.6a), the vector of the OLS residuals û lies in the orthogonal complement
of the subspace of the regressors ”‹(X), cf. (1.7),

û œ ”‹(X) µ En.

The equations (7.6a) and (7.6b), respectively, are therefore called orthogonality condi-
tions.

– The OLS residual vector û is perpendicular to the explained/fitted/predicted values
X—̂ œ ”(X). (xT

i
û = 0 implies that cos(◊) = 0 in (1.2).)
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– û corresponds to the perpendicular of y on X—, which is given by minimising the
Euclidean norm of u(—) = y ≠ X— with respect to —:

min
—

||u(—)||.

The OLS estimator thus minimises the Euclidean norm of the residual vector!

– Note: Minimising a di�erent norm (which would imply a di�erent loss function) would
result in a di�erent estimator and the residual vector would no longer be perpendicular
to X!

• Definition

– Unit basis vector: et =
1
0 0 · · · 0 1 0 · · · 0

2
T

, where there is a 1 in the t-th
row. All n unit basis vectors et, t = 1, . . . , n form a basis for En, where every basis
vector has norm ||et|| = 1.

• Additional property if constant in the model:
The regression line, or in the case of k > 2 regressors the regression hyperplane,
passes through the barycentre, i. e. through ȳ and the mean values of the regressors x̄i,
i = 1, . . . , k

ȳ = —̂1 + —̂2x̄2 + · · · + —̂kx̄k. (7.7)

If the regression contains a constant, x1 corresponds to a vector ÿ with ones

ÿ :=

Q

cccca

1
1
...
1

R

ddddb
. (7.8)

Proof: Replacing x1 in (7.6b) with ÿ yields

ÿT û = 0 bzw. ÿT û =
nÿ

t=1
ût = 0, (7.9)

i. e. the deviations of the regression line cancel out on average.

ÿT y = ÿT x1—̂1 + ÿT x2—̂2 + · · · + ÿT xk—̂k + ÿT û¸˚˙˝
=0 see above

nȳ = nx̄1—1 + nx̄2—2 + · · · + nx̄k—k + 0

yields (7.7) after multiplication with 1/n. ⇤

7.1.2. Orthogonal projections and their properties

Projection in everyday language:
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7.1. The geometry of the OLS estimator
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Figure 7.1.: Geometry in E3 of the OLS estimator,
n = 3 (R program (allows rotation and tilting of the graph) and calculation notes see section A.5,
page 342

• By the action of light, a two-dimensional image of a three-dimensional object is produced
on a wall: the three-dimensional object is projected onto a surface, i.e. a two-dimensional
object.

• When projecting from three-dimensional space into two-dimensional ’space’, information is
lost.

• Depending on the position of the light source, the projection on the wall changes.

Definitions

• A projection is a mapping from an n-dimensional space into a k-dimensional subspace,
k < n. Within the subspace, the projection is invariant, since the points do not change
through the mapping within the subspace. (Cf. property of idempotence for projection
matrices)
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Figure 7.2.: Scatterplot ((xt2, yt) in red, (xt2, Xt—) in black, (xt2, ŷt) in blue) (R program see section A.5,
page 342)

• An orthogonal projection is a mapping in which the distances between the points in En

and the projections in the subspace are minimised. So: the vectors connecting the points
in En and the orthogonal subspace are perpendicular to the subspace.

Projection in econometrics: the n sample observations y define a point in a n-dimensional
Euclidean space. A Euclidean subspace is defined by the k Æ n regressor variables. The fitted
values ŷ = X— lie in the said subspace since the OLS estimator is a projection of y into this
subspace, as will be shown below. See section 7.1 for this.

Review: The projection matrices for the OLS estimators are

PX := X
1
XT X

2≠1
XT , (7.3)

MX := I ≠ PX (7.4)

The projections into a k-dimensional subspace require that all regressors are linearly indepen-
dent, i. e. the dimension of ”(X) is equal to k. This justifies assumption (B3) in section
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7.1. The geometry of the OLS estimator

9.1.1).

OLS projections:
The OLS estimator involves two projections:

• The OLS estimator of the fitted values ŷ

ŷ = PXy (7.1)
corresponds to a projection from y œ En to ŷ œ ”(X),

i. e. from the n-dimensional space into the k-dimensional subspace ”(X) spanned by the
regressors X.

• The OLS estimator of the residuals û

û = MXy (7.2)
corresponds to a projection from y œ En to û œ ”‹(X),

i. e. from the n-dimensional space into the orthogonal complement of the subspace spanned
by the regressors. The dimension of the subspace ”‹(X) is equal to n ≠ k.

Properties of the OLS projections and the corresponding projection matrices PX

and MX, (cf. section 1.6):

• The projection matrices PX and MX are idempotent:

PXPX = PX, MXMX = MX

and thus
PX · . . . · PX · PX = PX and MX · . . . · MX · MX = MX.

• The projection matrices PX and MX are symmetric, i. e. PT

X
= PX and MT

X
= MX.

• PXMX = 0.

Geometric interpretation: the first projection (i. e. single premultiplication with PX

and MX, respectively) yields a vector in the invariant subspace which a further projection
cannot change.

• PX and MX imply complementary projections.

This is because, due to MX = I ≠ PX, their sum equals the output vector:

PXy + MXy = y. (7.10)

• The OLS method corresponds to orthogonal projections.

Proof: For two complementary projections it holds that

PXMX = PX (I ≠ PX) = PX ≠ PX = O. (7.11)
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For arbitrary vectors in the two subspaces z œ ”(X) and w œ ”‹(X) it holds that
z = PXz and w = MXw. Since PX is symmetric, z and w are orthogonal to
each other, since

zT w = zT PT

X
MXw = 0 bzw. < z, w > = < PXz, MXw > = 0.

⇤

In general, if two projections are complementary and the corresponding projection
matrices are symmetric, they define an orthogonal decomposition.

Geometric interpretation: PX and MX define an orthogonal decomposition of En,
so the two vectors PXy and MXy lie in two orthogonal subspaces.

If one wants to project a vector in ”(X) onto ”‹(X), the perpendicular must be formed
into the subspace ”‹(X). This leads exactly to the origin. The two projections therefore
cancel each other out. MX eliminates all vectors in ”(X) to the origin and correspondingly
PX eliminates all vectors in ”‹(X).

Consequences (of orthogonality) of OLS projections

• Notation:

Total Sum of Squares

TSS := ||y||2 ”=
nÿ

t=1
(yt ≠ ȳ)2 := SST, (7.12)

Explained Sum of Squares

ESS := ||ŷ||2= ||PXy||2 ”=
nÿ

t=1
(ŷt ≠ ȳ)2 := SSE, (7.13)

Sum of Squared Residuals

SSR := ||û||2= ||MXy||2. (7.14)

SST, SSE were defined in Wooldridge (2009, Section 2.3) or in the course material for the
bachelor course Introduction to Econometrics.

PX,W projects into the invariant subspace ”(X, W).

• Decomposition of the Total Sum of Squares (TSS)

||y||2 = ||X—̂||2 + ||û||2 (7.15)
TSS = ESS + SSR

The decomposition of the TSS (7.15) corresponds to Pythagoras’ theorem.
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7.1. The geometry of the OLS estimator

Proof:

||y||2 = ||PXy + MXy||2 = < y, y > (7.16)
= < PXy + MXy, PXy + MXy >

= yT PT

X
PXy + yT PT

X
MXy + yT MT

X
PXy

+ yT MT

X
MXy.

One obtains
||y||2 = yT PXy + yT MXy

= ||PXy||2 + ||MXy||2,

and thus (7.15). ⇤

However:

||PXy||2 Æ ||y||2 and
||y||2 Æ ||X—||2 + ||u||2.

• Fitted values and residuals are independent of scaling of the regressors and
independent linear combinations of the regressors with a non-singular (k ◊ k) matrix
A, because ”(X) = ”(XA), since

PXA = XA
1
(XA)T XA

2≠1
(XA)T

= XA
1
AT XT XA

2≠1
AT XT

= XAA≠1(XT X)≠1(AT )≠1AT XT

= X(XT X)≠1XT

= PX

and correspondingly for MXA, i. e.

y = PXy + MXy
y = PXAy + MXAy.

• Frisch-Waugh-Lovell theorem, see next section.

To read: Davidson & MacKinnon (2004, Section 2.3)

7.1.3. Partitioned regression and Frisch-Waugh-Lovell theorem

• The starting point is again the multiple linear regression model (6.1)

y = X— + u.
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• If one is particularly interested in —k, (6.1) can be written as follows:

y = X1—1 + xk—k + u =
1
X1 xk

2 A
—1
—k

B

+ u, (7.17)

where

– X1 is a (n ◊ (k ≠ 1)) matrix and xk is a (n ◊ 1) vector,

– —1 is a ((k ≠ 1) ◊ 1) vector and —k is a scalar.

In section 9.6 it is shown that the OLS estimator of —k using

y = xk—k + Á, Á = X1—1 + u

is biased unless the empirical correlation between xk and all other regressors x1, . . . , xk≠1
is zero or — = 0, cf. (9.32). The empirical correlation is zero if in the regression

xk = X1” + ÷

it holds that:

”̂ =
1
XT

1 X1
2≠1

XT

1 xk = 0 … XT

1 xk = 0
… xT

1 xk = xT

2 xk = · · · = xT

k≠1xk = 0. (7.18)

Geometric interpretation of (7.18): xk is orthogonal to x1, . . . , xk≠1.

• What to do if (7.18) does not hold? Orthogonalise!
Considering the general case: The regression model is then

y = X1—1 + X2—2 + u (7.19)

with partitioning of the regressor matrix

X =
1
X1 X2

2

into the (n ◊ k1) matrix X1 and the (n ◊ k2) matrix X2 (k = k1 + k2).

• How to orthogonalise? Use of orthogonal projections.
Orthogonalise by

Z = MX1X2.

Test with MX1 := M1:

XT

1 Z = XT

1 (M1X2) = XT

1 (I ≠ P1)X2 = XT

1 X2 ≠ XT

1 X2 = 0.

• Thus, to estimate —2, one can perform the following regressions:

– an OLS regression for y = X1—1 + X2—2 + u or

161



7.1. The geometry of the OLS estimator

– an OLS regression for y = M1X2—2 + v.

Possible problem: The residual vectors are not equal (verify!).
Solution: Multiply all variables by M1. One obtains

M1y = M1X1—1 + M1X2—2 + M1u, (7.20)
M1y = M1X2—2 + Á. (7.21)

Frisch-Waugh-Lovell theorem (FWL theorem)

1. The OLS estimators for —2 for the regression models

y = X1—1 + X2—2 + u (7.19)

and

M1y = M1X2—2 + Á (7.21)

are numerically identical.

2. The OLS residuals of the regressions for (7.19) and (7.21) are numerically identical.

Regeln for calculating with projection matrices for partitioned regressions (7.19):

PXP1 = P1PX = P1 (7.22)
MXM1 = M1MX = MX (7.23)

The multiplication of two di�erent projection matrices, where the subspace of one projection
matrix is contained in the subspace of the other projection matrix, corresponds to the projection
matrix projecting into the smaller subspace.

Proof of the FWL theorem: Cf. Davidson & MacKinnon (2004, Section 2.5,
p. 68-69). Statement 1.: The OLS estimator for (7.21) is

—̂2 =
1
XT

2 M1X2
2≠1

XT

2 M1y. (7.24)

Substituting the OLS estimators for the total regression (7.19) yields

y = X1—̂1 + X2—̂2 + û (7.25)

Multiplication from the left by XT

2 M1 yields

XT

2 M1y = XT

2 M1X2—̂2, (7.26)

since XT

2 M1X1 = 0 and XT

2 M1û = XT

2 M1MXy = XT

2 MX¸ ˚˙ ˝
=0

y = 0. Solving (7.26)

yields (7.24).
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Statement 2.: Multiplication of (7.25) by M1 yields

M1y = M1X2—̂2 + M1û¸ ˚˙ ˝
=M1MXy

= M1X2—̂2 + MXy¸ ˚˙ ˝
û

= M1X2—̂2 + û.

Thus, the OLS residuals Á̂ for (7.21) just corresponds to the OLS residuals û for
the full regression (7.19). ⇤

Interpretation of the Frisch-Waugh-Lovell theorem: The OLS estimator for —2 can
also be performed sequentially by running di�erent OLS regressions with fewer variables. The
regression

M1y = M1X2—2 + Á (7.21)

corresponds to a regression of residuals on residuals of the following OLS estimations:

• M1y just corresponds to the residuals of a regression of y on X1.

• X2 just contains the regressors xk1+1, . . . , xk1+k2 . Thus, for each j = k1 + 1, . . . , k1 + k2 the
vector M1xj just corresponds to the residuals of a regression from xj on X1.

By pre-multiplying M1 in (7.21), residuals are generated from the respective variable that are
perpendicular to the subspace spanned by the regressors in X1, so that for the OLS estimation
of (??) the influences of the regressors in X1 do not matter, since they are each orthogonal to
the variables in (7.21).

For reading: Davidson & MacKinnon (2004, Section 2.4)

7.2. Applications of the Frisch-Waugh-Lovell theorem

1. Adjustment of regressors of no interest

Examples:

• Constant: W.l.o.g, let x1 = ÿ = (1, 1, ..., 1)T and thus Mÿ := In ≠ 1
n
ÿÿT . Mÿ

is called the centring matrix, since

Mÿ = In≠ 1
n

ÿÿT =

Q

cccca

1 0 · · · 0
0 1
... . . .
0 1

R

ddddb
≠ 1

n

Q

cccca

1 1 · · · 1
1 1
... . . .
1 1

R

ddddb
=

S

WWWWU

1 ≠ 1
n

≠ 1
n

1 ≠ 1
n

. . .
≠ 1

n
1 ≠ 1

n

T

XXXXV
.

Pre-multiplication of a vector with Mÿ calculates the deviations from the
mean of the vector. MÿX yields centred regressors. The vector of slope
parameters —2 can be estimated using the Frisch-Waugh-Lovell theorem:

Mÿy = MÿX2—2 + Mÿu,

—̂2 =
1
XT

2 MÿX2
2≠1

XT

2 Mÿy.
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7.2. Applications of the Frisch-Waugh-Lovell theorem

Interpretation: The point cloud in a scatter plot is shifted by centring x or
y, the slope of the regression line does not change.

• ˘ Seasonal dummy variables: In time series, regularly recurring fluctuations
can often be modelled by seasonal dummies. If one combines seasonal dummies
and constant, if available, in the matrix S and one is only interested in the
parameter vector —, one can estimate

y = S– + X— + u or
MSy = MSX— + MSu

where MS = I ≠ S(ST S)≠1ST . For quarterly data starting with the first
quarter of a year and ending with the last quarter of a year, S can be chosen
as follows:

S =

Q

ccccccccccca

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
... ... ... ...
0 0 0 1

R

dddddddddddb

or S =

Q

ccccccccccca

1 1 0 0
1 0 1 0
1 0 0 1
1 0 0 0
1 1 0 0
... ... ... ...
1 0 0 0

R

dddddddddddb

or ...

• ˘ Time trend

2. ˘ Representation of the uncentred coe�cient of determination

• Note definitions of SSE, SST, TSS, ESS in (7.12) and (7.13), SSR in (7.14) as well as

||y||2 = ||ŷ||2 + ||û||2 (7.15)

• Uncentred R2:

R2
u

:= ESS

TSS
= ||ŷ||2

||y||2 = ||PXy||2

||y||2 = cos2 ◊ ∆ 0 Æ R2
u

Æ 1. (7.27)

Proof sketch: The last equal sign in (7.27) follows from the definition of
cosine: cos ◊ = Adjacent/Hypotenuse = ||PXy||/||y||. ⇤

From (7.15) it also follows that

R2
u

= 1 ≠ SSR

TSS
= 1 ≠ ||û||2

||y||2 = 1 ≠ ||MXy||2

||y||2 . (7.28)

Disadvantage of R2
u
: If there is a constant in the regression model, x1 = ÿ, and

if the data are not centred, R2
u

depends on the value of the constant (Davidson &
MacKinnon 2004, Section 2.5), since when —1 is increased, the denominator changes
while the numerator remains constant.
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3. Representation of the (centred) coe�cient of determination)

(Centred) coe�cient of determination R2: When we talk about the coe�cient of
determination, we generally mean the centred R2. Definitions commonly used in the
literature:

R2 = SSE

SST
=

q
n

t=1 (ŷt ≠ ȳ)2

q
n

t=1 (yt ≠ ȳ)2 . (7.29)

R2 = 1 ≠ SSR

SST
= 1 ≠ ||û||2

||Mıy||2 = 1 ≠ ||MXy||2

||Mıy||2 . (7.30)

R2 = ||Mıŷ||2

||Mıy||2 = ||MıPXy||2

||Mıy||2 . (7.31)

R2 = ||PXMıy||2

||Mıy||2 ∆ 0 Æ R2 Æ 1 (because of (7.10) with Mıy). (7.32)

R2 = [Corr (ŷ, y)2 =

1q
n

t=1

1
ŷt ≠ ¯̂y

2
(yt ≠ ȳ)

22

3q
n

t=1

1
ŷt ≠ ¯̂y

22
4 1q

n

t=1 (yt ≠ ȳ)2
2 (7.33)

=

1
ŷT Mıy

22

(ŷT Mıŷ) (yT Mıy) ∆ 0 Æ R2 Æ 1.

Notes:

• All definitions are identical if there is a constant in the model.

• Warning: If no constant is in the model, not all definitions guarantee that R2 œ [0, 1],
see the following table. Software gives di�erent results depending on the definition used.

• Properties of di�erent definitions for OLS:

Definition used e. g. by Codomain
without constant in X

(7.29) Wooldridge (2009, Equation (2.38)) Ø 0
(7.30) Davidson & MacKinnon (2004, Equation (2.55)), Æ 1

Wooldridge (2009, Equation (2.38))
(7.31) Greene (2008, Equation (3-26)) Ø 0
(7.32) Davidson & MacKinnon (2004, Equation (2.55)) [0, 1]
(7.33) Greene (2008, Equation (3-27)) [0, 1]

• Valid transformations if X with constant:

PıPX = Pı. (7.34a)
MıMX = MX. (7.34b)
ŷT Mıŷ = ŷT Mıy. (7.34c)
ÿ ¯̂y = Pıŷ = PıPXy = Pıy = ÿ ȳ … ¯̂y = ȳ. (7.34d)
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7.2. Applications of the Frisch-Waugh-Lovell theorem

Proof sketch: Apply the rules for calculating with projection matrices
(7.22) and (7.23) for x1 = ÿ. (7.34c) holds since ŷT Mıû = ŷT MÿMXû =
yT PT

X
MXû = 0. ⇤

General remarks

• All definitions of R2 (all except (7.33)) , which are based on the Pythagorean theorem,
are only meaningful when using the OLS estimator. Otherwise, values less than zero or
greater than one may occur.

• Since for (7.33) 0 Æ [Corr (ŷ, y)2 Æ 1 holds, but the Pythagorean theorem has not been
used, the square of the empirical correlation coe�cient can always be used as a
goodness-of-fit measure. It is often referred to as pseudo-R2.

For reading: Davidson & MacKinnon (2004, Section 2.5)

4. ˘ Leverage e�ect

• To estimate the e�ect of a possibly influential sample observation (yt, Xt), the OLS
estimators for the complete sample are compared with the OLS estimator for the sample
without observation t. The latter is obtained by including a suitable dummy variable et

in (6.1)
y = X— + et– + u, (7.35)

since Met
y = Met

X— + residuals (Frisch-Waugh-Lovell theorem) holds and because of
Met

= I ≠ eteT

t
the t-th observation is dropped.

• PX is sometimes called a hat matrix and its t-th diagonal element is therefore referred
to as ht. The latter corresponds to

0 Æ ht = eT

t
PXet = ||PXet||2 Æ ||et||2 = 1. (7.36)

It holds that q
n

t=1 ht = tr(PX) = k, see tutorial or (Davidson & MacKinnon 2004,
Section 2.6), and thus

h̄ = k

n
(7.37)

and if X contains a constant, it holds that

ht Ø 1/n … ht = ||PXet||2 Ø ||PÿPXet||2 = ||Pÿet||2 = 1/n.

• If the OLS estimator for — based on (7.35) (without the t-th observation) is denoted
with —̂

(t)
, the di�erence of the OLS estimators can be given as

—̂ ≠ —̂
(t)

= –̂
1
XT X

2≠1
XT PXet = 1

1 ≠ ht

1
XT X

2≠1
XT

t
ût. (7.38)

The t-th observation is possibly influential and thus a leverage point if

166



– ht is large (close to 1) (refers to x-coordinates),

– ût is large (refers to y-coordinate).

Proof: Verification of (7.38) via multiple applications of the properties of
projection matrices etc. (details in Davidson & MacKinnon (2004, Section 2.6)):

y = PX,et
y + MX,et

y,

y = X—̂
(t)

+ –̂et + MX,et
y,

PXy = X—̂
(t)

+ –̂PXet + 0

X
3

—̂ ≠ —̂
(t)

4
= –̂PXet,

—̂ ≠ —̂
(t)

= –̂
1
XT X

2≠1
XT PXet¸ ˚˙ ˝

XT

t

= 1
1 ≠ ht

1
XT X

2≠1
XT

t
ût,

where by FWL theorem –̂ = e
T

t
MXy

eT

t
MXet

= ût

1≠ht

. ⇤

•

R commands

In R, one obtains the ht’s and —̂ ≠ —̂
(t)

, t = 1, . . . , n given by (7.36) and (7.38) with
influence(...).

For reading: Davidson & MacKinnon (2004, Section 2.6)

More on the geometry of the OLS estimator can be found in Ruud (2000), for example.
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8. Multiple Regression: Interpretation

8.1. Parameter interpretation, functional form and data transformation

• The term linear in the linear regression model does not mean that there must be a linear
relationship between the variables, but that the parameters enter the model linearly.

• Examples of models that are linear in the parameters:

yt = —1 + —2xt2 + —3xt3 + ut,

yt = —1 + —2 ln xt2 + ut,

ln yt = —1 + —2 ln xt2 + —3x
2
t3 + ut,

ln yt = —1 + —2xt + ut,

yt = —1 + —2x
2
t

+ ut.

• Examples of models that are nonlinear in the parameters:

yt = —1 + —2x
“

t2 + ut with parameters —1, —2, “,

y“

t = —1 + —2 ln xt2 + ut with parameters “, —1, —2,

yt = —1 + —2xt2 + —3xt3 + 1
1 + exp(⁄(xt2 ≠ fi)) (”1 + ”2xt2 + ”3xt3) + ut

with parameters —1, —2, —3, ⁄, fi, ”1, ”2, ”3.

• The last example allows smooth switching between two linear systems/regimes. Of course,
almost infinitely many arbitrary forms of nonlinearity are conceivable. The estimation
requires, for example, the nonlinear OLS estimator, which is covered in the master
course Advanced Econometrics.

However, linear regression models can approximate nonlinear relationships between depen-
dent and independent variables well if the former provide a good (Taylor)approximation of
the nonlinear relationship through variable transformation and/or consideration of terms
with powers of higher order.

Second-order Taylor expansion:

g(x, z) = g(x0, z0) + gx(x0, z0)(x ≠ x0) + gz(x0, z0)(z ≠ z0) (8.1)

+ 1
2

Ë
gxx(x0, z0)(x ≠ x0)2 + 2gxz(x0, z0)(x ≠ x0)(z ≠ z0) + gzz(x0, z0)(z ≠ z0)2

È

+ Remainder(x, z, x0, z0),



with the following notation of the partial derivatives:

gx(x0, z0) = ˆg(x, z)
ˆx

-----
x=x0,z=z0

,

gxz(x0, z0) = ˆ2g(x, z)
ˆxˆz

-----
x=x0,z=z0

.

• The natural logarithm in econometrics

Probably the most widely used transformation in empirical economics is the natural
logarithm, or ln for short. The interpretation of the slope parameter has to be adjusted
accordingly.

Taylor approximation of the logarithmic function: ln(1 + z) ¥ z if z is close to 0.

From this, an approximation important for the calculation of growth rates or returns can
be derived:

(�xt)/xt≠1 := (xt ≠ xt≠1)/xt≠1

¥ ln (1 + (xt ≠ xt≠1)/xt≠1) ,

(�xt)/xt≠1 ¥ ln(xt) ≠ ln(xt≠1).

For relative changes �xt/xt≠1 close to zero this is a good approximation. Percentage values
are obtained by multiplying by 100:

100� ln(xt) ¥ %�xt = 100(xt ≠ xt≠1)/xt≠1.

Accordingly, for small �xt/xt≠1, percentage changes can be well approximated via 100[ln(xt)≠
ln(xt≠1)].

Economic interpretation of OLS parameters

• Consider the ratio of relative changes of two non-stochastic variables y and x

�y

y

�x

x

= %-change of y

%-change of x
= %�y

%�x
.

If �y æ 0 and �x æ 0, then �y

�x
æ dy

dx
.

• Applying this result to the above ratio gives the elasticity

÷(x) = dy

dx

x

y
. (8.2)
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8.1. Parameter interpretation and functional form

• Interpretation: If the relative change of x is 0.01, then the relative change of y is exactly
0.01÷(x).

Or: If x changes by 1%, then y changes by ÷(x)%.

• If y, x are random variables, the elasticity is defined based on the conditional expected
value of y given x:

÷(x) = dE[y|x]
dx

x

E[y|x] .

This can be derived by considering
E[y|x1=x0+�x]≠E[y|x0]

E[y|x0]
�x

x0

=

E[y|x1 = x0 + �x] ≠ E[y|x0]
�x

x0

E[y|x0]

and then letting �x go towards 0.

• Notation:

�E[y|x1, . . . , xj, . . . , xk] := E[y|x1, . . . , xj + �xj, . . . , xk] ≠ E[y|x1, . . . , xj, . . . , xk]

¥ ˆE[y|x1, . . . , xj, . . . , xk]
ˆxj

�xj

Di�erent models and interpretations of —j

For each model, we assume below that it is correctly specified and that the conditional expected
value of the errors given the regressors is zero.

• In the following, the index t does not appear because the model of the population is
considered.

• Models that are linear in variables (level-level)

y = —1x1 + . . . + —jxj + . . . + —kxk + u.

It is E[y|x1, . . . , xk] = —1x1 + . . . + —jxj + . . . + —kxk

ˆE[y|x1, . . . , xk]
ˆxj

= —j

and thus approximately
�E[y|x1, . . . , xk] = —j�xj.

In words: The slope parameter indicates the absolute change in the conditional expected
value of the dependent variable y when the independent variable xj changes by one unit,
ceteris paribus.
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• Linear-log models (level-log)

y = —1 ln x1 + . . . + —j ln xj + . . . + —k ln xk + u.

It holds that
ˆE[y|x1, . . . , xk]

ˆxj

= —j

1
xj

and thus approximately

�E[y|x1, . . . , xk] ¥ —j� ln xj = —j

100100� ln xj ¥ —j

100%�xj.

In words: The conditional expected value of y changes by —j/100 units, when xj changes
by 1%.

• Log-linear models (log-level)

ln y = —1x1 + . . . + —jxj + . . . + —kxk + u

or
y = eln y = e—1x1+...+—kxk+u = e—1x1+...+—jxj+...+—kxkeu.

Thus
E[y|x1, . . . , xk] = e—1x1+...+—kxkE[eu|x1, . . . , xk].

If E[eu|x1, . . . , xk] is constant, it holds that

ˆE[y|x1, . . . , xk]
ˆxj

= —j e—1x1+...+—kxkE[eu|x1, . . . , xk]
¸ ˚˙ ˝

E[y|x1,...,xk]

= —jE[y|x1, . . . , xk].

One obtains approximately

�E[y|x1, . . . , xk]
E[y|x1, . . . , xk] ¥ —j�xj, or %�E[y|x1, . . . , xk] ¥ 100—j�xj

In words: The conditional expected value of y changes by 100 —j% when xj changes by one
unit.

• Log-log models are often called log-linear or constant-elasticity models and are very
popular in empirical practice

ln y = —1 ln x1 + . . . + —2 ln xk + u.

Similar to above, it can be shown that the following holds:

ˆE[y|x1, . . . , xk]
ˆxj

= —j

E[y|x1, . . . , xk]
xj

, and thus —j = ÷(x1, . . . , xk),

if E[eu|x1, . . . , xk] is constant.

In this model, the slope parameter of the log-log model is just equal to the elasticity for the
original level variables E[y|x1, . . . , xk] and xj. In words: The conditional expected value of
y changes by —j% when xj changes by 1%.
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8.1. Parameter interpretation and functional form

• The transformations of regressors can be di�erent for di�erent regressors.

Example: y = —1 + —2 ln xt2 + —3x2
t3 + u

Trade flows: (Continuation of the empirical analysis of section 6.3)

R code (Extract from the R program in section A.4)
summary(lm(trade_0_d_o ~ wdi_gdpusdcr_o)) #level - level model
summary(lm(trade_0_d_o ~ log(wdi_gdpusdcr_o))) #level - log model
summary(lm(log(trade_0_d_o) ~ wdi_gdpusdcr_o)) #log - level model
summary(lm(log(trade_0_d_o) ~ log(wdi_gdpusdcr_o))) #log - log models
summary(lm(log(trade_0_d_o) ~ log(wdi_gdpusdcr_o)+log(cepii_dist)))

Listing 8.1: ./R_code/4_�_Beispiel_Handelsstroeme_eng.R

R output for log-level model
Call:
lm(formula = log(trade_0_d_o) ~ wdi_gdpusdcr_o)

Residuals:
Min 1Q Median 3Q Max

-5.6770 -1.4776 0.3231 2.1255 3.4143

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.086e+01 3.776e-01 55.248 < 2e-16 ***
wdi_gdpusdcr_o 5.466e-13 2.010e-13 2.719 0.00915 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.505 on 47 degrees of freedom
(1 observation deleted due to missingness)

Multiple R-squared: 0.1359, Adjusted R-squared: 0.1175
F-statistic: 7.392 on 1 and 47 DF, p-value: 0.009148

Interpretation: An increase in GDP in the exporting country by $1 billion
(= 109 US dollar) leads to an average increase in imports of 100 —̂2 109% =
5.466 · 10≠13 · 1011% = 0.055%. Accordingly, an increase of 100 billion, which is
roughly equivalent to a 1% increase, results in an average increase of 5.5%.

R output for log-log model
Call:
lm(formula = log(trade_0_d_o) ~ log(wdi_gdpusdcr_o))

Residuals:
Min 1Q Median 3Q Max

-2.6729 -1.0199 0.2792 1.0245 2.3754

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.77026 2.18493 -2.641 0.0112 *
log(wdi_gdpusdcr_o) 1.07762 0.08701 12.384 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.305 on 47 degrees of freedom
(1 observation deleted due to missingness)

Multiple R-squared: 0.7654, Adjusted R-squared: 0.7604
F-statistic: 153.4 on 1 and 47 DF, p-value: < 2.2e-16
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Interpretation: A 1% increase in the GDP of the exporting country is accompa-
nied by an average increase in imports of 1,077%.

8.2. Data scaling

• Scaling of the dependent variable:

– Initial model:
y = X— + u.

– Variable transformation: yú
i

= a ·yi with scaling factor a. æ New transformed regression
equation:

ay¸˚˙˝
yú

= X a—¸˚˙˝
—ú

+ au¸˚˙˝
uú

yú = X—ú + uú (8.3)

– OLS estimator for —ú from (8.3):

—̂ú = (XÕX)≠1 XÕyú

= a (XÕX)≠1 XÕy = a—̂.

– Error variance for homoscedastic (see (9.10)) and uncorrelated errors:

V ar(uú|X) = V ar(au|X) = a2V ar(u|X) = a2‡2I.

– Variance-covariance matrix:

V ar(—̂ú|X) = ‡ú2 (XÕX)≠1 = a2‡2 (XÕX)≠1 = a2V ar(—̂|X)

– t-statistic:

tú =
—̂ú

j
≠ 0

‡
—̂ú

j

= a—̂j

a‡
—̂j

= t.

• Scaling of explanatory variables:

– Variable transformation: Xú = XA, where A is quadratic and in the case of variable
scaling diagonal. A must be invertible, cf. section 7.1.2. New regression equation:

y = XAA≠1— + u = Xú—ú + u. (8.4)
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8.3. Qualitative data as regressors

– OLS estimator for —ú from (8.4):

—̂ú =
1
XúT Xú

2≠1
XúT y =

1
AT XT XA

2≠1
AT XT y

= A≠1 (XÕX)≠1 XÕy = A≠1—̂.

– Result: The mere size of —j does not indicate how relevant the influence of the jth
regressor is. One must always take into account the scaling of the variable.

Example: In (8.1), a simple log-level model was estimated for the impact of
GDP on imports. The parameter estimate —̂GDP = 5.466 · 10≠13 seems to be
quite small. However, if we take into account that GDP is measured in dollars,
this parameter value is not small at all. If we rescale GDP into billions of dollars
(using A =

1
1 0
0 10≠9

2
), we get —̂ú

GDP
= 5.466 · 10≠4.

• Scaling of variables in logarithmic form only changes the constant —1, since ln yú =
ln ay = ln a + ln y.

• Standardised coe�cients: see Wooldridge (2009, Section 6.1) or Introduction to
Econometrics, section 6.2.

8.3. Qualitative data as regressors

8.3.1. Dummy variable or binary variable

A binary variable can take exactly two di�erent values and allows two qualitatively di�erent
states to be described.

Examples: female vs. male, employed vs. unemployed, etc.

• Generally, these values are coded as D = 0 and D = 1. This allows for a very simple
interpretation:

y = —1x1 + —2x2 + · · · + —k≠1xk≠1 + ”D + u,

E[y|x1, . . . , xk≠1, D = 1] ≠ E[y|x1, . . . , xk≠1, D = 0] =
—1x1 + —2x2 + · · · + —k≠1xk≠1 + ”

≠ (—1x1 + —2x2 + · · · + —k≠1xk≠1) = ”

The coe�cient ” of a dummy variable thus indicates by how much the intercept shifts when
D = 1 instead of D = 0. All slope parameters —i remain unchanged, where i = 1, . . . , k ≠ 1
(without constant) resp. i = 2, . . . , k ≠ 1 (with constant).

Note: In order to interpret the coe�cient of a dummy variable, one must know the reference
group. The reference group is the group for which the dummy takes the value zero.

Example: wage regression:
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– Initial question: Is the income of women significantly lower than that of men?

– Data: Sample of n = 526 workers in the U.S. from 1976. (Source: Examples
2.4, 7.1 in Wooldridge (2009)).

Data:

– wage: Hourly wage in USD,

– educ: Duration of education,

– exper: Work experience in years,

– tenure: Duration of employment with current company,

– female: dummy=1 if female, dummy=0 otherwise.

R code (Extract from R program in section A.6)
# Specification of the working directory
# in which the R program and the data are located

WD <- getwd() # set the directory of the R file and
setwd(WD) # set it as working directory

# Import the data
# The data file "wage1.txt" must be located in the same directory as the
# R file
wage_data <- read.table("wage1.txt", header = TRUE)
attach(wage_data)

# Wage regression with dummy variable, see section 8.4.1
wage_mod_1_kq <- lm(log(wage) ~ female +

educ + exper + I(exper^2) + tenure + I(tenure^2))
summary(wage_mod_1_kq)

Listing 8.2: ./R_code/8_4_Interpretationen_Wage_eng.R

R output
Call:
lm(formula = log(wage) ~ female + educ + exper + I(exper^2) +

tenure + I(tenure^2))

Residuals:
Min 1Q Median 3Q Max

-1.83160 -0.25658 -0.02126 0.25500 1.13370

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.4166910 0.0989279 4.212 2.98e-05 ***
female -0.2965110 0.0358054 -8.281 1.04e-15 ***
educ 0.0801966 0.0067573 11.868 < 2e-16 ***
exper 0.0294324 0.0049752 5.916 6.00e-09 ***
I(exper^2) -0.0005827 0.0001073 -5.431 8.65e-08 ***
tenure 0.0317139 0.0068452 4.633 4.56e-06 ***
I(tenure^2) -0.0005852 0.0002347 -2.493 0.013 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3998 on 519 degrees of freedom
Multiple R-squared: 0.4408, Adjusted R-squared: 0.4343
F-statistic: 68.18 on 6 and 519 DF, p-value: < 2.2e-16
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8.3. Qualitative data as regressors

The parameter ” corresponds to the di�erence in logarithmised income between
female and male workers, holding everything else constant (e. g. duration of
education, experience, etc.).

For the interpretation of the parameters of regressors that also occur as quadratic
terms in the model, see section 8.4.

• Approximate partial e�ect in log-level models The parameter ” corresponds to an
approximate prediction of the di�erence in y when ln y is modelled and the dummy
variable changes ceteris paribus.

Example: wage regression: The approximate average di�erence in income
between female and male workers is -29.65% in 1976.

What is the exact average di�erence in income?

• Expected value of a log-normally distributed random variable: If ln z ≥ N(µ, ‡2),
then z is log-normally distributed with

E[z] = E
Ë
eln z

È
= eµ+‡

2
/2. (8.5)

If a conditionally log-normally distributed random variable

ln z|x ≥ N(g(x), ‡2(x))

is given, then
E[z|x] = E

Ë
eln z|x

È
= eg(x)+‡

2(x)/2. (8.6)

• Exact partial e�ect in log-level models

ln y = —1x1 + —2x2 + · · · + —k≠1xk≠1 + ”D + u,

Assumption for calculation: u|x1, . . . , xk≠1, D ≥ N(0, ‡2).

Then, E [eu|x1, . . . , xk≠1, D] = e‡
2
/2 and

E[y|x1, . . . , xk≠1, D = 1] ≠ E[y|x1, . . . , xk≠1, D = 0]
E[y|x1, . . . , xk≠1, D = 0] =

1
e” ≠ 1

2
(8.7)

Proof:

E[y|x1, . . . , xk≠1, D = 1] ≠ E[y|x1, . . . , xk≠1, D = 0]
= e—1x1+—2x2+···+—k≠1xk≠1+”E [eu|x1, . . . , xk≠1, D = 1]
≠ e—1x1+—2x2+···+—k≠1xk≠1E [eu|x1, . . . , xk≠1, D = 0]
= e—1x1+—2x2+···+—k≠1xk≠1e”e‡

2
/2

≠ e—1x1+—2x2+···+—k≠1xk≠1e‡
2
/2

= E[y|x1, . . . , xk≠1, D = 0]
1
e” ≠ 1

2
.

Dividing the di�erence by E[y|x1, . . . , xk≠1, D = 0] yields (8.7). ⇤
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Example: wage regression: Question: What is the exact wage di�erence?
Answer: 100(e≠0.2965 ≠ 1) = ≠25.66%, if one assumes normally distributed errors.

• Note: If �xj is not close to zero, the exact partial e�ect

E[y|x1, . . . , xj + �xj, . . . , xk] ≠ E[y|x1, . . . , xj, . . . , xk]
E[y|x1, . . . , xj, . . . , xk] =

1
e—j�xj ≠ 1

2
(8.8)

should always be calculated, because then the Taylor approximation does not approximate
the logarithm function well and thus the value of the approximate partial e�ect is not very
reliable.

• Important: For comparisons between groups, comparing conditional means is
much more meaningful than comparing unconditional means.

Example: wage regression Comparison of the wages of men and women:
Assuming normally distributed errors, the exact partial e�ect is -25.66%. On
average, women earn about 26% less than men after taking into account education,
work experience and time in a company.

If, in contrast, one compares the unconditional mean values, e. g. with the

R code (Extract from R program in section A.6)
# Relative difference of unconditional mean wages of women and men
(mean(wage[female==1])-mean(wage[female==0]))/mean(wage[female==0])

# alternative calculation possibility
wage_mean <- lm(wage~0+female+I(1-female))
(wage_mean$coef[1]-wage_mean$coef[2])/wage_mean$coef[2]

Listing 8.3: ./R_code/8_4_Interpretationen_Wage_eng.R

then the di�erence is 35.38%, i. e. it is considerably larger, because men and
women obviously also di�er in terms of education, work experience and time in a
company.

So it is essential to take relevant influencing factors into account!

• Exact and approximate prediction in log-level model: Expected value of y given
the regressors x1, . . . , xk is given by

E[y|x1, . . . , xk] = e—1x1+...+—kxk · E[eu|x1, . . . , xk].

The true value of E[eu|x1, . . . , xk] depends on the probability distribution of u.

If u|x1, . . . , xk ≥ N(0, ‡2), then E[eu|x1, . . . , xk] = eE[u|x1,...,xk]+‡
2
/2. The exact predic-

tion ist thus
E[y|x1, . . . , xk] = e—1x1+...+—kxk+‡

2
/2.

Example: wage regression — exact prediction: How much does a woman
with 12 years of education, 10 years of experience and one year of employment
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8.3. Qualitative data as regressors

earn? The exact prediction of the hourly wage is

E[wage|female = 1, educ = 12, exper = 10, tenure = 1]
= exp(0.4167 ≠ 0.2965 · 1 + 0.0802 · 12 + 0.02943 · 10

≠ 0.0006 · (102) + 0.0317 · 1 ≠ 0.0006 · (12) + 0.39982/2)
= 4.18,

where ‡2 is estimated by s2 (9.25). The exact value of the mean hourly wage of
the person described is thus about $4.18.

If one omits the term es
2
/2 from the prediction, then one obtains an approximate

prediction.

Example: wage regression — approximate prediction:

E[ln(wage)|female = 1, educ = 12, exper = 10, tenure = 1]
= 0.4167 ≠ 0.2965 · 1 + 0.0802 · 12 + 0.0294 · 10

≠ 0.0006 · (102) + 0.0317 · 1 ≠ 0.0006 · (12)
= 1.35

Accordingly, the expected hourly wage is approximately exp(1.35) = 3.86 US
dollar and thus 30 cents less than the exact value.

Conclusion: for log-log and log-level models:

– for exact predictions one needs the empirical variance (with normal distribution assump-
tion),

– for approximate predictions it is su�cient to “plug” it into the regression equation.

8.3.2. Multiple subgroups

Illustration with an example:

Example: wage regression: (continued from section 8.3.1)

A worker is female or male and married or unmarried =∆ 4 subgroups.

1. female and unmarried

2. female and married

3. male and unmarried

4. male and married

Procedure
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• We define a group as reference group, such as: female and unmarried.

• Define dummy variables for the other subgroups.

R code (Extract from R program in section A.6)
femmarr <- female * married
malesing <- (1 - female) * (1 - married)
malemarr <- (1 - female) * married

wage_mod_2_kq <- lm(log(wage) ~ femmarr + malesing + malemarr +
educ + exper + I(exper^2) + tenure + I(tenure^2))

summary(wage_mod_2_kq)

Listing 8.4: ./R_code/8_4_Interpretationen_Wage_eng.R

R output
Call:
lm(formula = log(wage) ~ femmarr + malesing + malemarr + educ +

exper + I(exper^2) + tenure + I(tenure^2))

Residuals:
Min 1Q Median 3Q Max

-1.89697 -0.24060 -0.02689 0.23144 1.09197

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.2110279 0.0966445 2.184 0.0294 *
femmarr -0.0879174 0.0523481 -1.679 0.0937 .
malesing 0.1103502 0.0557421 1.980 0.0483 *
malemarr 0.3230259 0.0501145 6.446 2.64e-10 ***
educ 0.0789103 0.0066945 11.787 < 2e-16 ***
exper 0.0268006 0.0052428 5.112 4.50e-07 ***
I(exper^2) -0.0005352 0.0001104 -4.847 1.66e-06 ***
tenure 0.0290875 0.0067620 4.302 2.03e-05 ***
I(tenure^2) -0.0005331 0.0002312 -2.306 0.0215 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3933 on 517 degrees of freedom
Multiple R-squared: 0.4609, Adjusted R-squared: 0.4525
F-statistic: 55.25 on 8 and 517 DF, p-value: < 2.2e-16

Examples of interpretation:

• Ceteris paribus, married women earn on average approximately 8.8% less than
unmarried women. However, this e�ect is only significant at the 10% level (with
a two-sided test).

• The expected wage di�erence between married men and women is, ceteris
paribus, about 32.3 ≠ (≠8.8) = 41.1%. No t-statistic can be calculated directly
for this, but an F -statistic can. (To be able to perform a t-test, run the
estimation again with one of the two subgroups as reference group).

Remarks:

• It is not recommended to create a dummy variable for all subgroups because then the
di�erences with respect to the reference group cannot be tested directly.
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8.3. Qualitative data as regressors

• If one uses a dummy variable for all subgroups, no constant may be included in the model,
otherwise X has reduced column rank. Why?

Ordinal data in the regression

Ranking of universities:

The di�erences in quality between ranks 1 and 2, or ranks 11 and 12, can vary
enormously. Therefore, rankings are not suitable as regressors. Instead, we assign
a dummy variable Dj to each university except one (the “reference category”),
which means that we have to estimate some new parameters (Therefore, in the
foreign trade example, we might need to split the variable openess into several
dummies...).

Note: The coe�cient of a dummy variable Dj now indicates the shift of the
intercept between university j and the reference university.

Occasionally the ranking list is too long, so that too many parameters would have
to be estimated. It is then usually helpful to combine the data into groups, e. g.
ranks 1-10, 11-20, etc..

8.3.3. Interactions and dummy variables

• Interactions between dummy variables:

– e. g. to define subgroups (e. g. married men).

– Note that a meaningful interpretation and comparison of the influences of the subgroups
depends crucially on a correct use of the dummies. For example, we add the dummies
male and married and their interaction to a wage equation

y = —1 + ”1male + ”2married + ”3male · married + . . . .

A comparison between married and unmarried men is thus given by
E[y|male = 1, married = 1] ≠ E[y|male = 1, married = 0]
= —1 + ”1 + ”2 + ”3 + . . . ≠ (—1 + ”1 + . . .) = ”2 + ”3.

• Interactions between dummies and quantitative variables:

– This allows for di�erent slope parameters for di�erent groups
y = —1 + —2D + —3x + —4(x · D) + u.

Note: Here, —2 denotes the di�erences between the two groups only for the case x = 0.
If x ”= 0, this di�erence is

E[y|D = 1, x] ≠ E[y|D = 0, x]
= —1 + —2 · 1 + —3x + —4(x · 1) ≠ (—1 + —3x)
= —2 + —4x.
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Even if —2 is negative, the overall e�ect may be positive!

Example: wage regression (continued from section 8.3.1)

Interaction of dummy with the regressor educ:

R code (Extract from R program in section A.6)
wage_mod_3_kq <- lm(log(wage) ~ female +

educ + exper + I(exper^2) + tenure + I(tenure^2) +
I(female*educ))

summary(wage_mod_3_kq)

Listing 8.5: ./R_code/8_4_Interpretationen_Wage_eng.R

R output
Call:
lm(formula = log(wage) ~ female + educ + exper + I(exper^2) +

tenure + I(tenure^2) + I(female * educ))

Residuals:
Min 1Q Median 3Q Max

-1.83264 -0.25261 -0.02374 0.25396 1.13584

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.3888060 0.1186871 3.276 0.00112 **
female -0.2267886 0.1675394 -1.354 0.17644
educ 0.0823692 0.0084699 9.725 < 2e-16 ***
exper 0.0293366 0.0049842 5.886 7.11e-09 ***
I(exper^2) -0.0005804 0.0001075 -5.398 1.03e-07 ***
tenure 0.0318967 0.0068640 4.647 4.28e-06 ***
I(tenure^2) -0.0005900 0.0002352 -2.509 0.01242 *
I(female * educ) -0.0055645 0.0130618 -0.426 0.67028
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4001 on 518 degrees of freedom
Multiple R-squared: 0.441, Adjusted R-squared: 0.4334
F-statistic: 58.37 on 7 and 518 DF, p-value: < 2.2e-16

The return to education, i. e. the average hourly wage di�erence for an additional
year of education, is not gender-specific, as the p-value of the corresponding
interaction term is above any common significance level.

• Conclusion: If a regression variable occurs in several terms (interactions, quadratic terms)
in the model, generally more parameters have to be considered to interpret a relationship.

• Tests for group di�erences

– are carried out using F -tests.

– Chow test: Allows to test whether group di�erences exist in terms of group-specific
intercepts and/or (at least one) group-specific slope parameter.

Example:

y = —1 + —2D + —3x1 + —4(x1 · D) + —5x2 + —6(x2 · D) + u. (8.9)
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8.4. Models with quadratic regressors

Pair of hypotheses:

H0 :—2 = —4 = —6 = 0 vs.
H1 :—2 ”= 0 and/or —4 ”= 0 and/or —6 ”= 0.

8.4. Models with quadratic regressors

• Models with quadratic regressors:

– As an example, assume the following multiple regression model

y = —1x1 + —2x2 + —3x3 + —4x
2
3 + u.

The marginal impact of a change in x3 on the conditional expected value y is

ˆE[y|x1, . . . , x3]
ˆx3

= —3 + 2—4x3.

Thus, a change in x3 by �x3 ceteris paribus a�ects the independent variable y on average
by

�E[y|x1, . . . , x3] = (—3 + 2—4x3)�x3.

So the e�ect obviously depends on the level of x3 (and thus an interpretation of —3 alone
is not meaningful!).

– In some empirical applications, one uses quadratic or logarithmic regressors to approxi-
mate a non-linear regression function.

Example: Non-constant elasticities can be approximated as follows

ln y = —1 + —2x2 + —3 ln x3 + —4(ln x3)2 + u.

The elasticity of y with respect to x3 is therefore

—3 + 2—4 ln x3

and is constant if and only if —4 = 0.

– Example: trade flows: So far we have only considered multiple regression
models that were log-log or log-level specified in the initial variables.

Now we want to consider another specification for modelling imports in which a
logarithmised regressor is also present in quadratic form in the equation.

Model 5: (Models 2 and 3a were estimated in section 6.3. Models 1, 3b and 4
are first introduced in section 10.3.)

ln(Imports) = —1 + —2 ln(GDP ) + —3 (ln(GDP ))2 + —4 ln(Distance)
+ —5 Openness + —6 ln Area + u.
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It was just shown that then for the elasticity of imports with respect to GDP
one has:

—2 + 2—3 ln(GDP ). (8.10)

The estimation of model 5 was carried out with the following

R code (Extract from R program in section A.4)
mod_5_formula <- log(trade_0_d_o) ~ log(wdi_gdpusdcr_o) +

I(log(wdi_gdpusdcr_o)^2) + log(cepii_dist) + ebrd_tfes_o + log(cepii_area_o)

mod_5_kq <- lm(mod_5_formula)
summary(mod_5_kq)

Listing 8.6: ./R_code/4_�_Beispiel_Handelsstroeme_eng.R

R output
Call:
lm(formula = log(trade_0_d_o) ~ log(wdi_gdpusdcr_o) + I(log(wdi_gdpusdcr_o)^2) +

log(cepii_dist) + ebrd_tfes_o + log(cepii_area_o))

Residuals:
Min 1Q Median 3Q Max

-2.0672 -0.5451 0.1153 0.5317 1.3870

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -35.23314 17.44175 -2.020 0.04964 *
log(wdi_gdpusdcr_o) 3.90881 1.32836 2.943 0.00523 **
I(log(wdi_gdpusdcr_o)^2) -0.05711 0.02627 -2.174 0.03523 *
log(cepii_dist) -0.74856 0.16317 -4.587 3.86e-05 ***
ebrd_tfes_o 0.41988 0.20056 2.094 0.04223 *
log(cepii_area_o) -0.13238 0.08228 -1.609 0.11497
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8191 on 43 degrees of freedom
(1 observation deleted due to missingness)

Multiple R-squared: 0.9155, Adjusted R-squared: 0.9056
F-statistic: 93.12 on 5 and 43 DF, p-value: < 2.2e-16

Those already familiar with significance tests will see that the quadratic term is
significant at the 5% level. This provides statistical evidence for a non-linear
elasticity. Substituting the parameter estimates into (8.10), one gets

÷(GDP ) = 3.908811 ≠ 0.057108 ln(GDP ).

Figure 8.1 plots the elasticity of ÷(GDP ) for each observed value of GDP
against GDP (generated with the following R code).

R code (Extract from R program in section A.4)
elast_gdp <- mod_5_kq$coef[2] + 2* mod_5_kq$coef[3]*log(wdi_gdpusdcr_o)
# Create scatterplot
if (save.pdf) pdf("plot_modell5_elast.pdf.pdf", height=6, width=6)
plot(wdi_gdpusdcr_o, elast_gdp, pch = 16, col = "blue", main = "GDP-Elasticity")

Listing 8.7: ./R_code/4_�_Beispiel_Handelsstroeme_eng.R
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8.4. Models with quadratic regressors
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Figure 8.1.: Elasticity of ÷(GDP ) (R code see example on trade flows)

The GDP elasticity of imports is much larger for small economies (as measured
by GDP) than for large economies. In other words, for small economies, an
increase in GDP has a much greater impact on imports than for large economies.

Caution: Non-linearities sometimes result from missing relevant variables. Can you
guess which control variable should be added to model 5?

• Interactions: Example:

y = —1 + —2x2 + —3x3 + —4x3x2 + u.
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The marginal e�ect of a change in x3 is given by

�E[y|x2, x3] = (—3 + —4x2)�x3.

Thus, the marginal e�ect also depends on the level of x2!

For reading: Chapter 6 (without section 6.4) and chapter 7 (without sections 7.5 and 7.6) in
Wooldridge (2009).
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9. Statistical properties of the OLS estimator: expected
value and covariance

• The algebraic and geometric properties of the OLS estimator

—̂ = (XT X)≠1XT y. (6.5)

for the multiple linear regression model

yt = —1xt1 + —2xt2 + · · · + —kxtk + ut, t = 1, . . . , n, (5.24)
yt = Xt— + ut, t = 1, . . . , n, (5.25)
y = X— + u. (6.1)

were analysed in chapter 7.

• To answer many questions, knowledge of the algebraic and geometric properties of the OLS
estimator is not su�cient, but knowledge of the statistical properties of the OLS
estimator is necessary.

Examples:

– Example based on trade flows

– Based on the estimated parameter vector —̂, what can be concluded about the
values of the parameter vector — for the DGP (for the population)?

– To what extent can it be verified that the chosen econometric model contains
the DGP?

– Suppose you have another sample with k regressors on the same question.

� Why do the two OLS estimates probably di�er?

� Which of the two OLS estimates do you choose?

� Should you merge the OLS results of both samples?

If statements about the DGP are to be made on the basis of the sample, inductive
statistical methods are necessary. In order to be able to say something about the
properties of such statements, assumptions about the DGP and the econometric
model are necessary.

Which assumptions lead to which (statistical) properties of the OLS estimator is the subject
of this chapter.



If the population corresponded to the sample and we were only interested in key figures
such as sample correlation or coe�cient of determination, we would already be done.

• Important properties of an estimator:

– Unbiasedness

– Variance

– Mean squared error (MSE)

– Consistency

– E�ciency

– Exact distribution in finite samples

– Asymptotic distribution

Analysis of the properties of the OLS estimator Overview of sections

OLS estimator for
— ‡2 covariance matrix

Unbiasedness 9.1.1 9.5 9.3
Variance 9.3
MSE 9.6
Consistency 9.2
E�ciency 9.4
Exact distribution in finite samples 11.1
Asymptotic distribution 11.2

9.1. Unbiasedness of the OLS estimator

Review of section 5.4:

• The bias of a parameter estimator ◊̂ for ◊ is defined as

E[◊̂] ≠ ◊0,

where ◊0 is the true parameter value, i. e. the parameter value of the DGP (cf. (5.51)).

• An estimator ◊̂ is called unbiased, if there is no bias for all feasible values of ◊0.

• Interpretation: Unbiasedness implies that for a large number of samples the average
value of all estimates is very close to the true value.

• If two estimators are equal in all properties except unbiasedness, the unbiased estimator is
preferable. Why?
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9.1. Unbiasedness of the OLS estimator

9.1.1. Conditions for unbiasedness of the OLS estimator

Derivation: It holds, provided X has full rank and the multiple linear regression model is
correctly specified, that

—̂ = (XT X)≠1XT y
= —0 + (XT X)≠1XT u

and so

E[—̂] ≠ —0 = E
Ë
(XT X)≠1XT u

È
.

Unbiasedness of the OLS estimator holds if at least one of the following assumptions
regarding the regressors and errors is satisfied:

• all regressors are non-stochastic and E[u] = 0:

E
Ë
(XT X)≠1XT u

È
= (XT X)≠1XT E[u] = 0.

• Regressors X are stochastic but stochastically independent of the error vector u with
E[u] = 0. Then, it holds that

E
Ë
(XT X)≠1XT u

È
= E

Ë
(XT X)≠1XT

È
E[u] = 0.

• A weaker assumption than stochastic independence is

E[u|X] = 0. (9.1a)

Hence

E
Ë
(XT X)≠1XT u

--- X
È

= (XT X)≠1XT E[u| X] = 0.

Alternatively, assumption (9.1a) can be written as

E[ut|X] = E[ut|X1, . . . , Xt, . . . , Xn] = 0, t = 1, . . . , n. (9.1b)

Explanatory variables that satisfy (9.1) are called exogenous. Very often variables
satisfying assumption (9.1) are called strictly exogenous (e. g. Wooldridge (2009, Chapter
10)), see also bachelor course Time Series Econometrics, chapter 2.

• Note: From (9.1) follows by applying the iterated expected value that

E [E[ut|X1, . . . , Xt, . . . , Xn]|xsj] = E[ut|xsj] = 0 =∆ Cov(ut, xsj) = 0
for all s = 1, . . . , n and all j = 1, . . . , k. (9.2)

Strict exogeneity thus implies that the error ut is uncorrelated with past, present
or future regressors.
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• Note: The assumption (9.1) is meaningless without specifying a model for the errors u,
such as u = y ≠ X—, and gains meaning only by referring to a (parametric) model.
Thus, the condition of (strict) exogeneity implicitly always includes a (parametric) model.

Example: For the simple (normal) linear regression model resulting from (5.32),
(9.1) is satisfied, since for the pair —1, —2 œ R of the DGP, it holds that:

E[ln(Importst)|GDP1, GDP2 . . . , GDPn] = —1 + —2GDPt.

• Summary of assumptions or conditions for unbiasedness of the OLS estimator —̂
for the parameter vector —:

– (B1) Correctly specified model The DGP is included for — = —0 in the multiple
linear regression model (6.1)

y = X— + u

(MLR.1 in Wooldridge (2009)).

– (B2a) Exogeneity resp. strict exogeneity (9.1): (follows from MLR.2 and MLR.4
in Wooldridge (2009)).

E[u|X] = 0.

– Assumption (B2b) will be used and introduced later.

– (B3) No perfect collinearity X (or XT X) has full rank (MLR.3 in Wooldridge (2009)).

• Unbiasedness can be "‘checked"’ with Monte Carlo simulation.

Example: Generate 1000 samples with n = 50 and estimate a correctly specified
simple linear regression model. The DGP is

yt = 1 + 0.9xt + ut, ut ≥ NID(0, 4), t = 1, 2, . . . , n. (9.3)

See section 2.9.1 for definition of NID. The xt are drawn randomly from the
set 1, 2, . . . , 20 with replacement. Using the R program, see section A.7,
page 347 the 1000 replications yield the mean 0.9973185 for —1 and the mean
0.9004453 for —2. I. e. the mean values as estimators of the expected value are
very close to the true values. The histograms for —̂1 and —̂2 in figure 9.1 show
that the OLS estimates scatter around the true parameters.

9.1.2. Predetermined regressors

• A weaker assumption than strict exogeneity (9.1) is

E[ut|Xt] = 0 für t = 1, . . . , n, (9.4)

because the error ut may only not depend on the regressors Xt of the t-th sample observation.
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9.1. Unbiasedness of the OLS estimator
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Figure 9.1.: Histograms of OLS estimates for —1 and —1 based on 1000 replications (R program, see section
A.7, page 347)

– Regressors Xt that satisfy the condition (9.4) are called predetermined with respect
to the error term ut.

– In regression models for time series data, the errors ut are also referred to as innovations
or shocks.

– Wooldridge (2009, Chapter 10) also refers to assumption (9.4) as contemporaneous
exogeneity.

190



• Strict exogeneity (9.1) follows from the assumption of predetermined regressors (9.4) (equiv-
alent to Wooldridge 2009, MLR.4) and the assumption of a random sample (Wooldridge
2009, MLR.2), because of

E[ut|X1, X2, . . . , Xt, . . . , Xn] = E[ut|Xt].

• Models whose regressors violate the assumption of strict exogeneity but are
predetermined with respect to ut:

– autoregressive models, see section 12.3.1.

– dynamic linear regression models, see section 13.4.

Both models include lagged dependent variables as regressors.

• If the assumption of strict exogeneity (9.1) is violoated, the OLS estimator is biased. To
obtain an unbiased estimator, it is not su�cient for regressors to be predetermined (9.4).

• Revise relationship between conditional expected value and covariance (2.29b),
(2.29c), (2.29f).

9.2. Consistency of the OLS estimator

• See section 5.4 for the definition and meaning of the consistency of an estimator.

• Consistency of the OLS estimator: In addition to (B1), the following assumptions
apply:

– (A1) There is a LLN for XT X/n

plim
næŒ

A
XT X

n

B

= plim
næŒ

1
n

nÿ

t=1
XT

t
Xt

= lim
næŒ

1
n

nÿ

t=1
E

Ë
XT

t
Xt

È
= SXT X

and SXT X has full rank.

(equivalent to Davidson & MacKinnon 2004, equations (3.17) and (4.49), respectively)

– (A2) There is a LLN for XT u/n

plim
næŒ

1
n

nÿ

t=1
XT

t
ut = 0.

Then, plim
næŒ —̂n = —0 and the OLS estimator is consistent.

191



9.2. Consistency of the OLS estimator

• Common procedure for the theoretical derivation of consistency conditions using
the example of the OLS estimator:

—̂n = (XT X)≠1XT y
= —0 + (XT X)≠1XT u

= —0 +
A

XT X
n

B≠1

¸ ˚˙ ˝
:=An

XT u
n¸ ˚˙ ˝

:=an

.

Applying the calculation rules for plim’s (3.1) in section 3.4 yields under the assumption
(B1) of a correctly specified model

plim
næŒ

—̂n = —0 + plim
næŒ

A
XT X

n

B≠1

plim
næŒ

XT u
n

= —0 +

Q

cccccca
plim
næŒ

A
XT X

n

B

¸ ˚˙ ˝
exists and is nonsingular because of (A1)

R

ddddddb

≠1

plim
næŒ

XT u
n¸ ˚˙ ˝

=0, since because of (A2) a LLN holds
= —0

• Discussion of the assumptions

– Simplest case for validity of the assumptions (A1) and (A2): X = ı, a constant is the
only regressor, and ut ≥ IID(0, ‡2). Then the WLLN of Khinchin (see section 5.5.1)
holds, so that (A2) holds. (A1) can easily be shown.

Example: arithmetic mean for IID random variables

DGP: yt = µ0 + ut, ut ≥ IID(0, ‡2
0). Then, SXT X = n/n = 1.

– If there is a random sample and (9.4) holds, then assumption (B2a)) holds and
(A1) and (A2) are satisfied.

Proof: Since the sample elements are independent and identically distributed,
E

Ë
XT

t
Xt

È
= M, t = 1, 2, . . . , n holds, so it automatically follows that M =

SXT X and hence (A1). Moreover, because of (9.4) and the law of iterated
expectations, E [Xtut] = 0. Due to random sampling, Khinchin’s weak law of
large numbers can be applied to each vector element zt = Xtjut, from which
(A2) follows. ⇤

– Even if there is no random sample, e. g. because there is a sample with time series data,
there are assumptions that can be checked more easily than (A2). These can be found
in section 13.4.
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– There are simple cases for which (A1) is violated.

Example: xt = t.

– Section 13.4 also points out that assumption (A2) is weaker than assumption (B2a).

– The assumption (B3) is not mentioned because it is allowed that this can be violated
for individual realisations of samples. Only in the limit it is required that there is no
linear dependence between the regressors, since SXT X must have full rank in (A1).

Example: Monte Carlo simulation on estimation properties of the OLS
estimator with a random sample

• DGP (as in the Monte Carlo simulation in the previous section):

yt = 1 + 0.9xt + ut, ut ≥ NID(0, 4), t = 1, 2, . . . , n. (9.3)

See section 2.9.1 for definition of NID. The xt are drawn randomly from the
set 1, 2, . . . , 20 with replacement.

• Sample sizes: n = 50, 100, 500, 1000, 10000, 100000.

• R = 10000 replications.

R code, see section A.8, page 349.

R output

N beta_1_hat_mean beta_1_hat_sd beta_2_hat_mean beta_2_hat_sd
[1,] 5e+01 0.9939493 0.59113380 0.9008026 0.049219333
[2,] 1e+02 0.9979973 0.41867138 0.9005215 0.035010494
[3,] 5e+02 0.9979537 0.18655091 0.9001597 0.015467546
[4,] 1e+03 0.9983807 0.13101124 0.9001677 0.010893364
[5,] 1e+04 0.9996438 0.04134015 0.9000331 0.003431829
[6,] 1e+05 1.0001878 0.01323944 0.8999901 0.001098157

One can clearly see the unbiasedness of the OLS estimator and the decrease in
the standard deviation of the OLS estimator with increasing sample size. The
histograms in figures 9.2 and 9.3 for the parameter estimators and sample sizes
n = 500, 100, 500, 1000 indicate the validity of the central limit theorem. More on
this in section 11.2. Histograms for n = 10000, 100000 are generated with the R
code but not shown here.

Example: Monte Carlo simulation on estimation properties of the OLS
estimator in AR processes In section 13.5, the OLS estimator is used to
estimate time series data. In the MC study to determine the bias of the OLS
estimator in the AR(1) model, section 12.3.1, increase the sample size N and note
your results. Also calculate the variance of the estimates of all replications.
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9.3. The covariance matrix of the parameter estimators
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Figure 9.2.: Histograms of the OLS estimator for — for n = 50, 100 (R program see section A.8, page 349) DGP
see equation (9.3)

9.3. The covariance matrix of the parameter estimators

• Covariance matrix / Variance covariance matrix / Variance matrix: see equation
(5.52)

• Conditional variance covariance matrix: The conditional variance covariance matrix
provides the variance of ◊̂ associated with the conditional distribution of ◊̂ given X:

V ar(◊̃|X) = E
51

◊̃ ≠ E
Ë
◊̃|X

È2 1
◊̃ ≠ E

Ë
◊̃|X

È2
T

---- X
6

(9.5a)

= E
5
◊̃◊̃

T |X
6

≠ E
Ë
◊̃|X

È
E

Ë
◊̃|X

È
T

. (9.5b)

• Relationship between unconditional and conditional variances (see (2.28) for scalar
case)

V ar(◊̃) = E
Ë
V ar(◊̃|X)

È
+ V ar

1
E(◊̃|X)

2
. (9.6)
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Histogram for n= 500
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Figure 9.3.: Histograms of the OLS estimator for — for n = 500, 1000 (R program see section A.8, page 349)
DGP see equation (9.3)

Proof: ˘ Derivation:

E
51

◊̃ ≠ E(◊̃)
2 1

◊̃ ≠ E(◊̃)
2

T
6

= E
5
◊̃◊̃

T

6
≠ E(◊̃)E(◊̃T )

= E
5
E

3
◊̃◊̃

T |X
46

≠ E
Ë
E(◊̃|X)

È
E

5
E(◊̃T |X)

6

= E
5
E

3
◊̃◊̃

T |X
4

≠ E(◊̃|X)E(◊̃T |X) + E(◊̃|X)E(◊̃T |X)
6

≠ E
Ë
E(◊̃|X)

È
E

5
E(◊̃T |X)

6

= E
5
E

3
◊̃◊̃

T |X
4

≠ E(◊̃|X)E(◊̃T |X)
6

¸ ˚˙ ˝
E

Ë
V ar(◊̃|X)

È

+

E
5
E(◊̃|X)E(◊̃T |X)

6
≠ E

Ë
E(◊̃|X)

È
E

5
E(◊̃T |X)

6

¸ ˚˙ ˝
V ar

1
E

1
◊̃|X

22
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9.3. The covariance matrix of the parameter estimators

⇤

• Variance covariance matrix of the unbiased OLS estimator —̂ (assumptions (B1),
(B2a), (B3) satisfied):

V ar(—̂|X) = E
Ë
(—̂ ≠ —0)(—̂ ≠ —0)T |X

È

= (XT X)≠1XT E(uuT |X) X(XT X)≠1

= (XT X)≠1XT V ar(u|X) X(XT X)≠1. (9.7)

This is the general variance covariance matrix of the OLS estimator, where heteroscedasticity
and correlation between the errors given X is also allowed, since the conditional variance
covariance matrix of the errors V ar(u|X) is not further specified. This general case is
discussed in chapter 14.

• Variance covariance matrix of the OLS estimator with homoscedastic and
uncorrelated errors:

Additionally, the following assumption holds:

(B2b) Homoscedasticity and uncorrelated errors

V ar(u|X) = ‡2I,

where ‡2 = ‡2
0 holds for the error variance of the DGP.

– Then the variance covariance matrix of the OLS estimator (9.7) simplifies to the
well-known form

V ar(—̂|X) = ‡2
0(XT X)≠1. (9.8)

– The unconditional variance covariance matrix is obtained using (9.6):

V ar(—̂) = ‡2
0E

Ë
(XT X)≠1

È
, (9.9)

since V ar
1
E[—̂|X]

2
= V ar(—) = 0.

˘ For the existence of E
Ë
(XT X)≠1

È
, see the technical supplement at the end of the

section 9.4.

– Homoscedastic errors: The errors ut are called homoscedastic if their variance is
constant for all sample observations, i. e. it holds that:

V ar(ut|Xt) = ‡2
t

= ‡2. (9.10)

A stricter form is V ar(ut|X) = ‡2.

– Behaviour of the variance covariance matrix for increasing sample size: An
equivalent representation to (9.8) is:

V ar(—̂|X) =
3 1

n
‡2

0

4 3 1
n

XT X
4≠1

. (9.11)
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If condition (A1)
3 1

n
XT X

4≠1
p≠æ S≠1

XT X

is also fulfilled, the conditional variances V ar(—̂j|X) or covariances Cov(—̂j, —̂i|X) gener-
ally decrease if

� the sample size n increases,

� the error variance ‡2
0 becomes smaller.

– Asymptotic variance covariance matrix: If condition (A1) holds for (9.11), then
one gets

V ar(—̂|X) p≠æ 0, (9.12)

since ‡2
0/n æ 0 for n æ Œ. To obtain a variance covariance matrix that is fixed for

n æ Œ, this very term must converge to a fixed value, which is precisely the case when
—̂ ≠ —0 is multiplied by

Ô
n, since then

plim
næŒ

V ar(
Ô

n(—̂ ≠ —0)|X) = ‡2
0 S≠1

XT X
. (9.13)

The expression on the right-hand side is called the asymptotic variance covariance
matrix of the OLS estimator.

In practice, SXT X is estimated by XT X/n, which after canceling n yields the approxima-
tion

V ar(—̂|X) ¥ ‡2
0

1
XT X

2≠1
, (9.14)

where ‡2
0 is again estimated by s2.

– Variance of an estimator of a single parameter —j: If the regression includes a
constant, it holds that

V ar(—̂j|X) = ‡2
0

SSTj(1 ≠ R2
j
) , (9.15)

where R2
j

denotes the coe�cient of determination of a regression of xj on all remaining
regressors.

Interpretation: The variance of —̂j is larger,

� the better xj is explained by the remaining regressors in X, i. e. the larger the coe�cient
of determination of the regression of xj on the remaining regressors in X,

� the smaller the dispersion of the regressor xj,

� the larger the error variance ‡2
0.

Proof: Derivation of (9.15) (where j = 1 is chosen w.l.o.g. for simplicity):
Thus the following partitioning

y = x1—1 + X2—2 + u
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9.3. The covariance matrix of the parameter estimators

is possible and —1 can be estimated with the Frisch-Waugh-Lovell theorem (cf.
section 7.1) on the basis of the regression

M2y = M2x1—1 + residuals,

where M2 = I ≠ X2(XT

2 X2)≠1XT

2 . One obtains the OLS estimator:

—̂1 =
1
xT

1 M2x1
2≠1

xT

1 M2y.

It can be (easily) shown that

V ar(—̂1|X) = ‡2
0(xT

1 M2x1)≠1 = ‡2
0

xT
1 M2x1

.

Note that the expression xT

1 M2x1 = ||M2x1||2 = SSR1 (cf. (7.14)) corresponds
to the squared length of the residual vector of the regression from x1 on X2,
or the residual sum of squares of the regression from x1 on X2. Since R2

1 =
SSE1/SST1 and, if X2 contains a constant, SST1 = SSE1 + SSR1, one obtains
SSE1 = R2

1 SST1, and consequently, via SST1 ≠ R2
1 SST1 = SSR1,

||M2x1||2 = SST1(1 ≠ R2
1)

as well and thus (9.15) for j = 1. ⇤

• Multicollinearity or collinearity for short:

As just noticed, the following follows from (9.15): If the vector xj is ’almost’ linearly
dependent on at least one other column in X, the length of the residual vector is short and
the variance for —̂j is large. In this case, the variable j is said to be multicollinear
with one or more variables. We then have multicollinearity or collinearity for short.

The problem of multicollinearity can only be solved by increasing the sample size n.
Omitting the variable j will generally lead to a misspecified model, see section 9.6. However,
it is possible to consider the overall e�ect by looking at the mean squared error (5.50)
or (9.36).

In practice it is not necessary to calculate R2
j

for each variable. Instead, the correlation
matrix Corr(—̂|X) is considered. If the correlation between —̂i and —̂j is very close to 1 in
absolute value, this indicates multicollinearity.

• Variance of linear functions of parameter estimators

If the quantity “ to be estimated is a linear function of the estimated parameters

“̂ = wT —̂,

where w is a suitably dimensioned column vector, then the variance of “̂ can be determined
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very simply by

V ar(“̂|X) = V ar(wT —̂|X)
= E

Ë
wT (—̂ ≠ E

Ë
—̂|X

È
)(—̂ ≠ E

Ë
—̂|X

È
)T w|X

È

= wT E
Ë
(—̂ ≠ E

Ë
—̂|X

È
)(—̂ ≠ E

Ë
—̂|X

È
)T |X

È
w

= wT V ar(—̂|X)w. (9.16)

And for homoscedastic and uncorrelated errors (assumption (B2b)):

V ar(“̂|X) = ‡2
0wT (XT X)≠1w. (9.17)

Example of scale elasticity: “ = –1 + –2 in Cobb-Douglas production
function:

Y = AL–1K–2eu

ln Y = —1 + –1 ln L + –2 ln K + u (9.18)

• Variance of the prediction error with unbiased prediction (Application of (9.17))

If the assumptions (B1), (B2a), (B3) are fulfilled and thus the model is correctly specified,
the prediction ŷs = Xs—̂ for (ys, Xs) from the population is unbiased, since

E[ŷs|X, Xs] = Xs—0. (9.19)

This results in the prediction error

ys ≠ Xs—̂ = Xs

1
—0 ≠ —̂

2
+ us,

whose expected value is zero. The variance of the prediction error is therefore

V ar(ys ≠ Xs—̂|Xs, X) = E
5Ó

Xs

1
—0 ≠ —̂

2
+ us

Ô ;1
—0 ≠ —̂

2
T

XT

s
+ us

<---- Xs, X
6

= XsV ar(—̂|X) XT

s
+ E[u2

s
|Xs] ≠ 2Xs Cov(—̂, us|Xs, X)

¸ ˚˙ ˝
=0, with uncorrelatedness

= ‡2
0Xs(XT X)≠1XT

s
+ ‡2

0 (given assumption (B2b))

≠æ Variance of prediction error = Variance of the estimator of the dependent variable +
Variance of us.

• Summary of the assumptions of the multiple linear regression model with
strictly exogenous regressors

– (B1) Correctly specified model: The DGP is included in the multiple linear regression
model for — = —0.
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9.4. The e�ciency of unbiased OLS estimators

– (B2): u|X ≥ (0, ‡2I) ≈∆

Y
_______]

_______[

(B2a): E[u|X] = 0 (X is (strictly) exogenous) &
(B2b): V ar(u|X) = ‡2I (The errors conditional on X
are homoscedastic and uncorrelated).

– (B3) X has full column rank.

9.4. The e�ciency of unbiased OLS estimators

• Cf. for the definition of e�ciency of an estimator section 5.4 and (5.56). In the following,
the class of linear estimators is considered.

• Linear estimator: An estimator —̃ for the parameter vector — in a multiple linear
regression model is called linear if —̃ = Ay, where the (k ◊ n) matrix A := A(X) may
only depend on the regressors X, but not on y, i. e. E[A|X] = A holds.

• The OLS estimator is a linear estimator, since A = (XT X)≠1XT .

• A linear estimator —̃ = Ay is unbiased if the assumptions (B1), (B2a) apply, and

AX = I, since E[—̃|X] = AX—0 + AE[u|X]. (9.20)

• Comparison of the OLS estimator —̂ = (XT X)≠1XT y with arbitrary linear and
unbiased estimators —̃ = Ay with AX = I

– Gauss-Markov theorem: Under the assumptions (B1), (B2), (B3) the OLS
estimator —̂ is the e�cient estimator (best linear unbiased estimator (BLUE))
among all linear and unbiased estimators —̃. This means that the matrix of the di�erence
of the variance-covariance matrices V ar(—̃) ≠ V ar(—̂) is positive semidefinite.

Examples of ine�cient linear unbiased estimators:

� Estimator of the expected value (mean) (y1 + yn)/2.

� Any OLS estimator applied to a regression model with redundant independent
variables, see section 9.6.

� Instrument variable estimator, see e. g. the bachelor course Advanced Issues
in Econometrics or the master course Advanced Econometrics.

Proof sketch: Since —̃ ≠ —̂ =
1
A ≠ (XT X)≠1XT

2

¸ ˚˙ ˝
C

y = CX— + Cu = Cu, it

holds that
V ar(—̃) = V ar(—̂ + Cu) = V ar(—̂) + V ar(Cu),
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since E
Ë
(—̂ ≠ —0)(Cu)T

È
= 0 can be shown when taking (9.20) and (B2b) into

account. Since every variance-covariance matrix is positive semidefinite, this
also applies to V ar(Cu). ⇤

– Originally, the Gauss-Markov theorem was proved for non-stochastic regressors X.

• ˘ Technical supplement: If X is stochastic, it is possible in principle that, for example,
assumption (B3) or (9.20) is violated for a specific realisation of X, i. e. X does not
have full rankand therefore (XT X) is not invertible. If the regressors are continuously
distributed, then the probability of this is 0.

– If P (C) = 1 applies to an event C, then P (Cc) = 0 applies to the complement Cc. It is
then said that the event C occurs almost surely (a.s.).

– Example of an almost sure event: Let X œ R be a continuous random variable. The
event C = {X œ (≠Œ, a) fi (a, Œ)} has the complementary event Cc = {X = a}. Since
P (X = a) = P (Cc) = 0, it holds for C that P (C) = 1.

– If X only contains discrete regressors, for example a constant and a dummy variable,
then there is a positive probability that a sample will be drawn in which the dummy
variable takes the value 1 for all observations and therefore X has reduced rank and
XT X is not invertible. The assumption (B3) is therefore not almost surely fulfilled for
this example. In this case, E

51
XT X

2≠1
6

does not exist either, as there is a positive
probability that the matrix XT X is not invertible.

– The existence of the unconditional expected value and the unconditional variance of the
OLS estimator therefore requires that the assumptions (B1) to (B3) hold almost surely.

– For practice it is generally su�cient to know the distribution properties given the
regressors. Then you don’t need to worry about this problem.

– However, if you want to perform Monte Carlo simulations in which X is also redrawn at
each realisation, but X has reduced rank with positive probability, the case of a singular
XT X matrix will repeatedly occur and the OLS estimator cannot be calculated.

9.5. Estimating the error variance

• In this section, the assumptions (B1) to (B3) are assumed.

• In the correctly specified OLS model, the following applies,

û = MXy
= MXX—0 + MXu
= MXu, (9.21)

since MXX = 0.
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9.5. Estimating the error variance

The residual ût corresponds to a linear combination of the error vector u.

• Variance of the residual vector:
V ar(û|X) = V ar(MXu|X)

= E
Ë
MXuuT MT

X
|X

È

= MX(‡2
0I)MT

X

= ‡2
0MX. (9.22)

• Properties of the residuals ût: These result from the variance-covariance matrix of the
residuals V ar(û|X).

The residuals are generally

– correlated and

– heteroscedastic with V ar(ût|X) Æ V ar(ut) = ‡2
0.

Proof: As in section 7.2, et denotes a unit basis vector. Then
ût = eT

t
û

and
V ar(ût|X) = V ar(eT

t
û|X) = eT

t
V ar(û|X)et = ‡2

0eT

t
MXet = ‡2

0||MXet||2.
Due to the orthogonal decomposition

||et||2 = ||PXet||2¸ ˚˙ ˝
ht

+ ||MXet||2¸ ˚˙ ˝
1≠ht

,

such that ||MXet||2 Æ ||et||2 = 1. ⇤

• Maximum likelihood estimator for the error variance:

– The estimator
‡̂2 = 1

n

nÿ

t=1
û2

t
(9.23)

is called maximum likelihood estimator for the error variance ‡2, as it results from
the maximum likelihood approach, see master course Advanced Econometrics.

– Property: ‡̂2 is unbiased.

Proof:

E[‡̂2|X] = 1
n

nÿ

t=1
E[û2

t
|X]

= 1
n

nÿ

t=1
V ar(ût|X)

= ‡2
0

1
n

nÿ

t=1
||MXet||2.
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From ||PXet||2 = ht finally follows

E[‡̂2|X] = ‡2
0

1
n

nÿ

t=1
(1 ≠ ht¸ ˚˙ ˝

Æ1

) Æ ‡2
0.

With the help of the trace operator it can be shown that
nÿ

t=1
(1 ≠ ht) = n ≠ k.

From this follows
E[‡̂2|X] = n ≠ k

n
‡2

0. (9.24)

⇤

• Unbiased estimator for the error variance: Considering (9.24) in (9.23) provides the
unbiased estimator

s2 = 1
n ≠ k

nÿ

t=1
û2

t
. (9.25)

(Note the notation: in many other econometrics books, e. g. Wooldridge (2009), this
estimator is denoted by ‡̂2.)

• The root of s2 is denoted as standard error of regression.

• An unbiased estimator of the covariance matrix of the OLS estimator is then

\V ar(—̂|X) = s2(XT X)≠1. (9.26)

Example: trade flows For the OLS estimations of model 3 (6.17), the variance-
covariance matrix and correlation matrix of the parameter estimators are given in
the following R-output.

R code (Extract from R program in section A.4)
summary(mod_3a_kq)$cov

# Estimate the correlation matrix of the OLS estimators for model 3a
cov2cor(summary(mod_3a_kq)$cov)

# Estimate the covariance matrix of sample observations for model 3a
cor(data.frame(log_wdi_gdpusdcr_o = log(wdi_gdpusdcr_o),

log_cepii_dist=log(cepii_dist),ebrd_tfes_o))

Listing 9.1: ./R_code/4_�_Beispiel_Handelsstroeme_eng.R

R output
(Intercept) log(wdi_gdpusdcr_o) log(cepii_dist) ebrd_tfes_o

(Intercept) 6.2069332 -0.124749916 -0.315428513 -0.183737444
log(wdi_gdpusdcr_o) -0.1247499 0.004936052 0.002017428 -0.003353511
log(cepii_dist) -0.3154285 0.002017428 0.030582699 0.009851900
ebrd_tfes_o -0.1837374 -0.003353511 0.009851900 0.048163990
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9.6. Overspecified or misspecified linear regression models

(Intercept) log(wdi_gdpusdcr_o) log(cepii_dist) ebrd_tfes_o
(Intercept) 1.0000000 -0.7127084 -0.7239766 -0.3360454
log(wdi_gdpusdcr_o) -0.7127084 1.0000000 0.1641989 -0.2174947
log(cepii_dist) -0.7239766 0.1641989 1.0000000 0.2566970
ebrd_tfes_o -0.3360454 -0.2174947 0.2566970 1.0000000

log_wdi_gdpusdcr_o log_cepii_dist ebrd_tfes_o
log_wdi_gdpusdcr_o 1.0000000 -0.233241 0.2723423
log_cepii_dist -0.2332410 1.000000 -0.3037030
ebrd_tfes_o 0.2723423 -0.303703 1.0000000

Note that the correlations between the variables are not greater than 0.26 in
absolute value, i.e. relatively low, and there are no signs of multicollinearity.

9.6. Overspecified or misspecified linear regression models

For the definition of the information set see section 5.3.

Overspecification

• A model M is overspecified if it contains variables that belong to the information set �t

but are not contained in the DGP. (Note: Overspecified models are not misspecified).

Example: Let the DGP be contained in

y = X—0 + u, u|X ≥ (0, ‡2
0I), (9.27)

((B1),(B2) hold), but

y = X— + Z“ + u, u|X, Z ≥ (0, ‡2I) (9.28)

is estimated. The ‘unrestricted’ model (9.28) also contains the DGP (DGP œ M),
since the parameters — = —0, “ = 0 and ‡2 = ‡2

0 are possible.

• Properties of the OLS estimator —̃ of the overspecified model (9.28):

(i) unbiased, since according to the Frisch-Waugh-Lovell theorem, see page 7.1.3, the OLS
estimator —̃ of the regression

MZy = MZX— + residuals

with MZ = I ≠ Z(ZT Z)≠1ZT is identical to the OLS estimator for — in the overspecified
model (9.28). Therefore, the following applies,

—̃ = —0 + (XT MZX)≠1XT MZu ∆ E(—̃) = —0.

(ii) in general compared to the OLS estimator —̂ of the ‘smallest’ correctly specified model
(9.27) not e�cient. This is due to the Gauss-Markov theorem, cf. section 9.4. From
this follows, among other things, cf. (5.56),

V ar(—̃j|X, Z) Ø V ar(—̂j|X), j = 1, . . . , k.
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This inequality results, cf. (9.15), also directly from

‡2
0

SSTj(1 ≠ R2
j,X,Z

) Ø ‡2
0

SSTj(1 ≠ R2
j,X

) , j = 1, . . . , k.

The probability of multicollinearity is also increased by additional, unneeded variables.

– These results apply regardless of the sample size. It can therefore be shown that the
estimator of an overspecified model is asymptotically ine�cient.

Misspecification (also underspecification)

• A model M is underspecified or misspecified if the DGP is not included in the model.

Example: DGP is included in

y = X—0 + Z“0 + u, u|X, Z ≥ (0, ‡2
0I), “0 ”= 0, (9.29)

with (n ◊ k1) regressor matrix X and (n ◊ k2) regressor matrix Z, but the
regression model

y = X— + v (9.30)
is estimated. This results in the following for the OLS estimator for (9.30),

—̂ = (XT X)≠1XT y
= (XT X)≠1XT X—0 + (XT X)≠1XT Z“0 + (XT X)≠1XT u
= —0 + (XT X)≠1XT Z“0 + (XT X)≠1XT u.

• Note: The first part of the second term on the right-hand side (cf. notation (6.2)) is:

(XT X)≠1XT Z =
1
(XT X)≠1XT z1 (XT X)≠1XT z2 · · · (XT X)≠1XT zk2

2
.

The l-th column of (XT X)≠1XT Z therefore just contains the OLS estimator ”̂l = (XT X)≠1XT zl

of the (auxiliary) regression
zl = X”l + error. (9.31)

The OLS estimator —̂ can thus be written as

—̂ = —0 +
1
”̂1 ”̂2 · · · ”̂k2

2
“0 + (XT X)≠1XT u. (9.32)

Depending on the choice of condition in the (conditional) expected value, di�erent biases
are obtained:

– Thus, the OLS estimator for given sample values of all regressors relevant in the
DGP is biased if

E[—̂|X, Z] = —0 +
1
”̂1 ”̂2 · · · ”̂k2

2
“0 ”= —0, (9.33)

i. e. the regressors X and Z are not orthogonal in a given sample.
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9.6. Overspecified or misspecified linear regression models

– Thus, the OLS estimator for given sample values of all regressors in X is biased if

E[—̂|X] = E
Ë
E[—̂|X, Z]|X

È
= —0 + E

Ë1
”̂1 ”̂2 · · · ”̂k2

2
|X

È
“0 ”= —0, (9.34)

i. e. if E
Ë1

”̂1 ”̂2 · · · ”̂k2

2
|X

È
”= 0.

– Thus, the OLS estimator is biased if

E[—̂] = E
Ë
E[—̂|X, Z]

È
= —0 + E

Ë1
”̂1 ”̂2 · · · ”̂k2

2È
“0 ”= —0, (9.35)

i. e. if the unconditional expected value E
Ë1

”̂1 ”̂2 · · · ”̂k2

2È
”= 0. In other words, at

least one zti and xtj are correlated with each other.

– Important: If the expected value E
Ë1

”̂1 ”̂2 · · · ”̂k2

2È
”= 0 independent of the sample

size n, i. e. also for n æ Œ, then the OLS estimator for —0 is inconsistent!

Conclusion:

Misspecified model Overspecified model
OLS estimator is

finite sample generally biased ine�cient
asymptotically generally inconsistent asymptotically ine�cient

Obviously, the choice of a correct but not overspecified model is very important. This is the
task of model selection methods, which are described in the next chapter.

Mean squared error:

• The matrix of the mean squared error (MSE), cf. (5.50), is given all regressors X, Z:

MSE(—̂|X, Z) = E
51

—̂ ≠ —0
2 1

—̂ ≠ —0
2

T
---- X, Z

6
. (9.36)

As with the bias, a distinction can be made here with regard to the conditions (but this is
not done here).

• Note: only for unbiased estimators is the matrix of the mean squared error equal to the
variance-covariance matrix.

• It can be shown (possibly as an exercise) that

MSE(—̂|X, Z) = ‡2
0(XT X)≠1

¸ ˚˙ ˝
variance

+ (XT X)≠1XT Z“0“
T

0 ZT X(XT X)≠1
¸ ˚˙ ˝

squared bias
. (9.37)

An unambiguous statement on the comparison of this MSE matrix with that of the unbiased
OLS estimator in (9.29), i. e. MSE(—̃|X, Z) = ‡2

0(XT MZX)≠1, is not possible, but depends
on the size of the bias.

• The MSE (9.36) is therefore suitable as a criterion for evaluating di�erent models, since
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– in the case of misspecified models, the squared bias is taken into account and

– in the case of overspecified models, the too large OLS estimation variance

is weighed against each other.

• To determine the accuracy of the OLS estimator of the misspecified model, it no longer
makes sense to use the covariance matrix due to the bias of the estimator.

To read: Davidson & MacKinnon (2004), chapter 3.
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10. Model specification

Aims of model selection:

• Essential aspects of econometric modelling:

1. Search for the model that contains the DGP that generated the sample observations.

2. Avoid too large models.

3. Search for an e�cient estimation procedure.

In other words, model selection procedures for model specification are used to suitably
bound the probabilities

– of choosing a misspecified model and

– of choosing an overspecified model

or, if possible, to make them asymptotically approach zero.

The asymptotic requirements imply:

1. Consistent estimation of quantities of interest.

2. E�cient estimation of quantities of interest.

3. Existence of (asymptotic) test distributions for performing hypothesis tests.

• In practice there will rarely be a correctly specified model. Instead, search for the "‘best"’
model for the intended investigation, e. g. to determine the GDP elasticity of exports or
E[yt|�t]. What does "‘best"’ model mean? The quality of the model depends on how an
element contained in a model in reduced form can approximate the DGP. For models in
structural form, the implied model in reduced form must be considered. See section 5.2
for structural and reduced form. The evaluation of the approximation depends on the loss
function, for example (5.45), which was chosen for the problem.

• However, the econometric theory for approximating models is too complicated for this
course. Therefore, in this course we assume that there is a correctly specified model.



10. Model specification

Notes:

The C assumptions have not yet been discussed. They include time series data and are
discussed in detail in section 13.4. For the sake of completeness, however, they are also
mentioned below.

To 1. Consistency requires, among other things, that the model is correctly specified, i.e. the

– assumptions (B1) and (B2a)

– or more generally for time series, the assumptions (C1) and (C2a)

must be fulfilled. Then the following applies,

E[yt|�t] = Xt—0. (10.1)

To 2. E�ciency requires, among other things, that

– an e�cient estimation procedure is selected and

– that superfluous variables are avoided in the model.

For example, the OLS estimator is only

– e�cient if, among others, assumption (B2b) holds, or

– asymptotically e�cient if, among others, the assumption (C2b)

holds, i. e. the errors are homoscedastic.

To 3. Deriving test distributions requires additional assumptions, e. g. (B4) for exact tests or
(C4a) or (C4b) for asymptotic tests. (Cf. chapter 11.)

• The use of model selection criteria is intended to ensure that

a) no superfluous variables are included in the model and thus the e�ciency of the estimator
is reduced,

b) all relevant variables are contained in the model, i.e. (10.1) holds and thus a prerequisite
for consistency is fulfilled.

In smaller samples, it may not be possible to include all relevant variables in the model
without the estimation variance becoming too large. Model selection criteria allow a
"‘trade-o�"’ between a) and b).

• Nested models: M1 and M2 are nested if either M1 µ M2 or M2 µ M1 applies.
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10.1. Model selection criteria

10.1. Model selection criteria

• Basic idea of model selection criteria:

Selectioncriterion = fit measure + number of parameters · penalty function(n) (10.2)

– First term: Fit measure: Measures how well the estimated model fits the data. Fit
measures are selected that generally lead to an improvement in fit with an additional
parameter, but never to a deterioration in fit. Typically, either the maximum likelihood
estimator ‡̂2 = ûT û/n of the error variance (9.23) or minus twice the log-likelihood
function is selected here, with the latter di�ering from ‡̂2 by only a constant for a given
sample size, see (10.3).

It can be shown that the fit of a model in which relevant regressors are missing is
asymptotically larger than that of a correctly specified model. This suggests selecting
the model with the smallest fit. However, if the model is overspecified and ‡̂2 is used,
the true error variance is typically underestimated. There is therefore a risk of selecting
an overspecified model. To reduce the probability of this, a penalty term is used to make
it more di�cult to add additional irrelevant regressors.

– Second term: Penalty term: Product of the number of estimated parameters k in —
and penalty function:

� The penalty term penalises the number of parameters in order to avoid including
superfluous variables in the model and thus making the estimation procedure ine�cient.

� The penalty term increases with increasing k and the penalty function must be chosen
so that it decreases with increasing n. In the latter case, this means that additional
parameters in larger samples are penalised relatively less, but this penalty must not
approach zero too quickly!

– This implies a trade-o� : regressors are included in the model if the penalty is less than
the improvement in fit.

The choice of the penalty function (and thus the criterion) determines how this trade-o�
is quantified. Three di�erent criteria are commonly used: AIC, HQ and SC/BIC, see
below.

– Rule: Among all candidates considered, the specification for which the criterion yields
the smallest value is selected.

– It is advisable to check AIC, HQ and SC/BIC. In favourable cases, all criteria provide
the same result. Note that SC penalises additional parameters for sample sizes n > 8
more than HQ, and HQ again more than AIC.

– It is possible to use selection criteria to select from non-nested models as long as the
dependent variable is identical, see empirical example in section 10.3.

• For information: Log-likelihood function, more precisely concentrated log-likelihood
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function
l(—̂, ‡̂|y, X) = ≠n

2 (1 + ln(2fi)) ≠ n

2 ln ‡̂2 (10.3)

cf. for explanation and derivation Davidson & MacKinnon (2004, Equation (10.12)) or
course Advanced Econometrics, section 5.5

• Alternative definitions of model selection criteria:

Criterion Fit measure Number of par. Penalty function(n)

AIC = ln ‡̂2 + k · 2
n

, (10.4)

HQ = ln ‡̂2 + k · 2 ln(ln(n))
n

, (10.5)

SC = ln ‡̂2 + k · ln(n)
n

, (10.6)

AIC = ≠ 2
n

Q

ccca≠n

2 (1 + ln(2fi)) ≠ n

2 ln ‡̂2

¸ ˚˙ ˝
=Log-likelihood function

R

dddb + k · 2
n

(10.7)

HQ = ≠ 2
n

3
≠n

2 (1 + ln(2fi)) ≠ n

2 ln ‡̂2
4

+ k · 2ln(ln(n))
n

(10.8)

SC = ≠ 2
n

3
≠n

2 (1 + ln(2fi)) ≠ n

2 ln ‡̂2
4

+ k · ln(n)
n

(10.9)

In R the command AIC() calculates model selection criteria that di�er from the above
calculations in two respects:

– It is not divided by n.

– In addition to the estimated parameters in —, the variance is also added as an estimated
parameter.

For a comparison of di�erent models for given n this is irrelevant.

Fit measure Number of par. Penalty function(n)

AIC = ≠2
3

≠n

2 (1 + ln(2fi)) ≠ n

2 ln ‡̂2
4

+ (k + 1) · 2 (10.10)

HQ = ≠2
3

≠n

2 (1 + ln(2fi)) ≠ n

2 ln ‡̂2
4

+ (k + 1) · 2 ln(ln(n)) (10.11)

SC = ≠2
3

≠n

2 (1 + ln(2fi)) ≠ n

2 ln ‡̂2
4

+ (k + 1) · ln(n) (10.12)

There are also definitions in which the model selection criteria are maximised, e. g. in
Davidson & MacKinnon (2004, Section 15.4). So always note the exact definitions in the
software used!
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10.2. Tests for non-nested models

Formula Software - Command
Akaike Information Criterion (AIC)

(10.4) R: extractAIC()
(10.7) EViews, R: own program SelectCritEViews(), see section B.2

(10.10) R: AIC()

Hannan-Quinn (HQ)
(10.5) R: extractAIC(,k = log(log(n))))
(10.8) EViews, R: own program SelectCritEViews(), see section B.2

(10.11) R: AIC(,k = log(log(n))))

Bayesian Information Criterion (BIC)/Schwarz Criterion (SC)
(10.6) R: extractAIC(,k = log(n))
(10.9) EViews, R: own program SelectCritEViews(), see section B.2

(10.12) R: AIC(,k = log(n)))

• Alternative to the use of model selection criteria: Sequential testing. This requires t-tests
or F -tests, which are discussed in chapter 11.

• ˘ The comparison of two models using a model selection criterion can also be interpreted
as a test, whereby the significance level is determined by the penalty term.

10.2. Tests for non-nested models

See section 9.3.1 in course material for bachelor course Introduction to Econometrics or
Wooldridge (2009, Chapter 9) or Davidson & MacKinnon (2004, Section 15.3).

The following is dealt with there:

• Encompassing test, R command: encomptest(model_1,model_2)
(requires R package lmtest)

• J-Test, R command: jtest(model_1,model_2)
(requires R package lmtest)

10.3. Empirical analysis of trade flows: Part 2

Continuation of Empirical analysis of trade flows: Part 1 in section 6.3.

To step II.3: Specifying, estimating and selecting an econometric model

• Specifying and estimating di�erent models:
Five di�erent models are now specified and estimated:
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R commands:

Model 1
mod_1_formula <- log(trade_0_d_o) ~ log(wdi_gdpusdcr_o)

Model 2
mod_2_formula <- log(trade_0_d_o) ~ log(wdi_gdpusdcr_o) + log(cepii_dist)

Model 3a
mod_3a_formula <- log(trade_0_d_o) ~ log(wdi_gdpusdcr_o) + log(cepii_dist)

+ ebrd_tfes_o

Model 3b
mod_3b_formula <- log(trade_0_d_o) ~ log(wdi_gdpusdcr_o) + log(cepii_dist)

+ log(cepii_area_o)

Model 4
mod_4_formula <- log(trade_0_d_o) ~ log(wdi_gdpusdcr_o) + log(cepii_dist)

+ ebrd_tfes_o + log(cepii_area_o)

Calculate the models via

R code (Extract from R program in section A.4)
# Apply the function "SelectCritEviews" to four different models

mod_1_kq <- lm(log(trade_0_d_o) ~ log(wdi_gdpusdcr_o))
summary(mod_1_kq)
deviance(mod_1_kq) # Calculates SSR
SelectCritEviews(mod_1_kq) # Calculates AIC, HQ, SC

mod_2_kq <- lm(log(trade_0_d_o) ~ log(wdi_gdpusdcr_o) + log(cepii_dist))
summary(mod_2_kq)
deviance(mod_2_kq) # Calculates SSR
SelectCritEviews(mod_2_kq) # Calculates AIC, HQ, SC

mod_3a_kq <- lm(log(trade_0_d_o) ~ log(wdi_gdpusdcr_o) + log(cepii_dist) +
ebrd_tfes_o)

summary(mod_3a_kq)
deviance(mod_3a_kq) # Calculates SSR
SelectCritEviews(mod_3a_kq) # Calculates AIC, HQ, SC

mod_3b_kq <- lm(log(trade_0_d_o) ~ log(wdi_gdpusdcr_o) + log(cepii_dist) +
log(cepii_area_o))

summary(mod_3b_kq)
deviance(mod_3b_kq) # Calculates SSR
SelectCritEviews(mod_3b_kq) # Calculates AIC, HQ, SC

mod_4_kq <- lm(log(trade_0_d_o) ~ log(wdi_gdpusdcr_o) + log(cepii_dist) +
ebrd_tfes_o + log(cepii_area_o))

summary(mod_4_kq)
deviance(mod_4_kq) # Calculates SSR
SelectCritEviews(mod_4_kq) # Calculates AIC, HQ, SC

Listing 10.1: ./R_code/4_�_Beispiel_Handelsstroeme_eng.R
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10.3. Empirical analysis of trade flows: Part 2

provides output from which the following table can be generated:

Dependent variable: ln(Imports to Germany)
Independent variable/model (1) (2) (3a) (3b) (4)
Constant -5.77 4.676 2.741 3.409 2.427

(2.184) (2.178) (2.175) (2.098) (2.132)
ln(GDP ) 1.077 0.975 0.940 1.080 1.025

(0.087) (0.063) (0.0613) (0.071) (0.076)
ln(distance) — -1.074 -0.970 -915 -0.888

(0.156) (0.152) (0.159) (0.156)
Openness — — 0.507 — 0.353

(0.191) (0.206)
ln(area) — — — -0.213 -0.151

(0.089) (0.085)
Sample size 49 49 49 49 49
R2 0.765 0.883 0.900 0.900 0.906
Standard error of the regression 1.304 0.928 0.873 0.871 0.853
Residual sum of squares 80.027 39.644 34.302 34.148 32.017
AIC 3.4100 2.7484 2.6445 2.6400 2.6164
HQ 3.4393 2.7924 2.7031 2.6986 2.6896
SC 3.4872 2.8642 2.7989 2.7945 2.8094

• Selection of model: The table shows that model 4 must be selected if the Akaike criterion
(AIC) or the Hannan-Quinn (HQ) criterion is chosen, but model 3b if the Schwarz (SC)
criterion is chosen.

Continuation of Empirical analysis of trade flows: Part 3 in section 11.7.
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11. (Asymptotic) distribution of the OLS estimator and
testing in the multiple linear regression model

11.1. Exact distribution of the OLS estimator

• With previous assumptions, the following applies to the OLS estimator,

—̂n

(B3)= (XT X)≠1XT y (B1)= —0 + (XT X)≠1XT u.

• Without a distribution assumption for the error vector u, obviously nothing more can be
said about the distribution of —̂n, even if the X are given.

We make the assumption (cf. for the notation Davidson (2000, Section 2.4.1))

(B4) Multivariate normally distributed errors given X

u|X ≥ N(0, ‡2I),

where the error variance of the DGP is ‡2 = ‡2
0.

The joint density (conditional on X) is (cf. (2.32))

f(u1, u2, . . . , un|X; ‡2) = f(u|X; ‡2) = 1
(2fi‡2)n/2 exp

3
≠ 1

2‡2 uT u
4

. (11.1)

• If we apply (2.31) to —̂n, we obtain on the basis of assumption (B4) and the previous
assumptions (B2a), (B2b) that for each(!) sample size n

—̂n|X ≥ N
1
—0, ‡2

0(XT X)≠1
2

, (11.2)

i. e. the OLS estimator given X is exactly multivariate normally distributed.

• If we apply (2.31) to y = X—0 + u, we obtain

y|X ≥ N
1
X—0, ‡2

0I
2

≈∆ yt|X ≥ NID
1
Xt—0, ‡2

0

2
, t = 1, . . . , n. (11.3)

For arbitrary parameters, the normal multiple linear regression model

yt|Xt ≥ NID(xt1—1 + xt2—2 + . . . + xtk—k, ‡2), —1, . . . , —k œ R, ‡2 œ R+, (11.4)

is obtained.



11.2. Asymptotic distribution of the OLS estimator

• Note that a simple exact distribution such as (11.2) is only possible under the multivariate
normal distribution assumption. Why?

• Summary of the assumptions of the normal multiple linear regression model

– (B1) Correctly specified model: The DGP is contained in the multiple linear regression
model for — = —0.

– (B3) X has full column rank and

– (B4) u|X ≥ N(0, ‡2I).

Note that the assumption (B4) contains the assumption (B2).

• If there is a conditional distribution for the error vector u that di�ers from the normal
distribution, the exact distribution of the OLS estimator can generally only be determined
using simulation methods.

• If nothing is known about the type of conditional distribution of the errors, then the exact
distribution for finite n is unknown, i. e. —̂n|X ≥ unknown distribution. However, as shown
below, it is possible to determine the asymptotic distribution under certain conditions.

11.2. Asymptotic distribution of the OLS estimator

• Derivation

– As in the case of the expected value estimator, the OLS estimator must also be multiplied
by

Ô
n in order to obtain a non-singular asymptotic variance-covariance matrix. Under

assumptions (B1) and (B3), we obtain

Ô
n

1
—̂

n
≠ —0

2
=

Ô
n(XT X)≠1XT u =

A
XT X

n

B≠1

¸ ˚˙ ˝
:=An

XT uÔ
n

¸ ˚˙ ˝
:=an

.

– Now we have to apply Slutzky’s theorem (3.4) from section 3.5: If

i) An

P≠æ A and

ii) an

d≠æ a hold,

then Anan

d≠æ Aa.

– For i) to apply, (A1) must also apply, so that

plim
næŒ

1
XT X/n

2≠1
= S≠1

XT X

applies.
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– For ii) to hold, assumption (A2) must be "’reinforced". A central limit theorem must
now apply for XT u/

Ô
n:

(A3) 1Ô
n
XT u d≠æ wŒ ≥ N (0, ‡2

0SXT X)

• Asymptotic distribution of the OLS estimator
The assumptions (B1),(B3), as well as the assumptions (A1) and (A3) hold for the
multiple linear regression model. Then it holds that

Ô
n

1
—̂n ≠ —0

2
=

A
XT X

n

B≠1 1Ô
n

XT u

d≠æ S≠1
XT X

wŒ ≥ N
1
0, ‡2

0S≠1
XT X

2
. (11.5)

• In practice, the assumptions (A1) and (A3) (high level assumptions) cannot be checked
directly. Therefore, these assumptions are generally replaced by assumptions that are more
descriptive and easier to check. More on this soon.

• Application of the asymptotic distribution in practice:

– In heuristic notation, the asymptotic distribution can also be written as

—̂n

approximately≥ N

A

—0,
‡2

0
n

S≠1
XT X

B

,

since for a given sample size n is cancelled out.

– Since SXT X and ‡2
0 are unknown, the asymptotic distribution is not applicable. The

error variance ‡2
0 can be estimated with s2 and SXT X by

1
n

XT X = 1
n

nÿ

t=1
XT

t
Xt. (11.6)

This gives the following heuristic notation

—̂n

approximately≥ N
1
—0, s2(XT X)≠1

2
.

The main di�erence to the exact distribution is that the normal distribution only
applies approximately, but the approximation becomes more and more accurate as the
sample size n increases.

– If you want to analyse how good the approximation of the asymptotic normal distribution
is, you generally have to do this with the help of computer simulations, so-called Monte
Carlo simulations.

• When is assumption (A3) fulfilled?

For example, if there is a random sample and assumption (B2) applies. These assumptions
can be weakened, see section 13.4.
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11.2. Asymptotic distribution of the OLS estimator

Proof sketch:

– It holds that XT u = q
n

t=1 XT

t
ut¸ ˚˙ ˝

:=vt

. First, E[vt] and V ar(vt) are determined.

– From assumption (B2a) E[u|X] = 0 (strict exogeneity) it follows that

E[ut|X] = 0 for all t = 1, 2, . . . , n.

E [E[ut|X]|Xt] = E [ut|Xt] = 0.

E[XT

t
ut] = E

Ë
E[XT

t
ut|Xt]

È
= 0.

Thus, the expected value of vt = XT

t
ut is a zero vector.

– Due to the assumption (B2b), it holds that V ar(u|X) = ‡2
0I, and

V ar(ut|X) = E
Ë
u2

t
|X

È
= ‡2

0 for all t = 1, 2, . . . , n.

E
Ë
E[u2

t
|X]|Xt

È
= E

Ë
u2

t
|Xt

È
= V ar(ut|Xt) = ‡2

0.

V ar(vt) = V ar
1
XT

t
ut

2
= E

Ë
XT

t
u2

t
Xt

È
= E

Ë
E[u2

t
XT

t
Xt|Xt]

È
= ‡2

0E
Ë
XT

t
Xt

È
.

Since vt ≥ (0, V ar(vt)) and thus XT

t
ut ≥ (0, V ar(XT

t
ut)) holds and a random

sample was assumed, the multivariate central limit theorem (5.73) can be
applied to the estimator of the expected value

µ̂v,n = 1
n

XT u = 1
n

nÿ

t=1
XT

t
ut.

One obtains

Ô
nµ̂v,n

d≠æ N

A

0, ‡2
0 lim

næŒ

1
n

nÿ

t=1
E

Ë
XT

t
Xt

ÈB

.

It can be shown that the following applies based on assumption (A1):

SXT X = lim
næŒ

1
n

nÿ

t=1
E

Ë
XT

t
Xt

È
.

Thus one obtains

1Ô
n

nÿ

n=1
XT

t
ut

d≠æ N
1
0, ‡2

0SXT X

2
. (11.7)

– ˘ Use of the Cramér-Wold device: Choose arbitrary (k ◊ 1) vector ⁄. With
the previous results, the following applies,

⁄T XT

t
ut ≥

1
0, ‡2

0⁄T E
Ë
XT

t
Xt

È
⁄

2
.
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The asymptotic properties of the estimator of the expected value are then
considered

‹̂n = 1
n

nÿ

t=1
⁄T XT

t
ut

(= (scalar) random sequence). Under the additional condition that the
sample observations are stochastically independent and the usual regu-
larity conditions, the central limit theorem for heterogeneous but independent
random variables (5.72) can be applied and the following holds

Ô
n‹̂n

d≠æ N

A

0, lim
næŒ

1
n

nÿ

t=1
‡2

0⁄T E
Ë
XT

t
Xt

È
⁄

B

.

Since this applies to all ⁄ with ||⁄|| > 0, you can omit ⁄ due to the Cramér-
Wold device and one obtains

1Ô
n

nÿ

t=1
XT

t
ut

d≠æ N

A

0, ‡2
0 lim

tæŒ

1
n

nÿ

t=1
E

Ë
XT

t
Xt

ÈB

or again
1Ô
n

nÿ

n=1
XT

t
ut

d≠æ N
1
0, ‡2

0SXT X

2
. (11.7)

⇤

R commands
Calculate the variance-covariance matrix of two variables with cov(). Convert the
variance-covariance matrix into a correlation matrix with cov2cor().

11.3. Exact tests

Applications of exact tests:

• Specification of the normal linear regression model and checking of assumptions,
cf. section 11.1

– (B1) and E[u|X] = 0 ((B2a)): y = X— + u contains DGP

� t-tests, see section 11.3.1; F -tests, see section 11.3.2.

� Testing the correct functional form, e. g. with RESET test, see section 15.3.

� Testing for parameter stability, e. g. with Chow test, see (11.34) in section 11.3.2.

– (B3): XT X has rank k: Violation leads to error message "‘singular matrix"’.

– (B4): u|X ≥ N(0, ‡2I):
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11.3. Exact tests

� Assumes E[u|X] = 0, see above.

� Assumes: V ar(u|Xt) = ‡2 (Homoscedasticity): Tests for heteroscedasticity, see
section 15.2.

� Requires normally distributed errors: Lomnicki-Jarque-Bera test, see section 15.4.

• Checking economic hypotheses

11.3.1. t-tests: Testing a single restriction

• The parameter to be tested is called —2. The normal multiple linear regression model is
then:

y = X1—1 + x2—2 + u, u|X1, x2 ≥ N(0, ‡2I). (11.8)

• Pair of hypotheses: H0 : —2 = —2,H0 versus H1 : —2 ”= —2,H0

• t-test with known error variance ‡2
0:

– Test statistic:
z—2 = —̂2 ≠ —2,H0

‡
—̂2

. (11.9)

– Exact distribution: Under the assumptions (B1), (B3), (B4) and known error
variance, the following applies under H0:

z—2|X ≥ N(0, 1). (11.10)

The test distribution is completely known under H0.

Proof:

Overview of the procedure (The procedure is analogous to the derivation of
the test regarding the expected value (5.80))

1. With the help of the Frisch-Waugh-Lovell theorem, page 162, the test statistic
z—2 can be written as a linear combination of normally distributed errors.

2. Since a linear combination of multivariate normally distributed random vari-
ables is normally distributed again, the test statistic z—2 is normally distributed.

3. The standardisation in (11.9) was chosen so that under H0 (11.10) applies.

The steps in detail

1. Calculation of the test statistic: Applying the FWL theorem to —2 in
M1y = M1x2—2 + M1u results in

—̂2 = xT

2 M1y
xT

2 M1x2
, ‡2

—̂2
= ‡2

0(xT

2 M1x2)≠1
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Substituting into (11.9) gives

z—2 =
x

T

2 M1y

xT

2 M1x2
≠ —2,H0

‡0(xT
2 M1x2)≠1/2 .

Substituting (11.8) with —2 = —2,H0 , since H0 is assumed, provides a linear
combination of u for z

—̂2

z—2 = xT

2 M1u
‡0(xT

2 M1x2)1/2 = Bu.

2. and 3. Derivation of the distribution: Based on (2.33) one obtains

z—2|X ≥ N(0, 1)

since E[z—2|X] = E[Bu|X] = 0 and

V ar(z—2 |X) = V ar
1
B V ar(u|X)BT |X

2
= E(xT

2 M1uuT M1x2|X1, x2)
‡2

0(xT
2 M1x2)

= ‡2
0(xT

2 M1x2)
‡2

0(xT
2 M1x2)

= 1.

⇤

– If H1 applies, the test statistic is also normally distributed, but with a mean value that
is di�erent from zero. Cf. calculation of the power function in section 5.6.

• t-test with estimated error variance ‡̂2:

– Idea: (Cf. derivation of (5.74) in section 5.6) One replaces ‡ with s in test statistic
(11.9). This results in the following estimator for ‡

—̂2

s2
—̂2

= s2(xT

2 M1x2)≠1 = yT MXy
n ≠ k

(xT

2 M1x2)≠1.

– Test statistic:
t—2 = —̂2 ≠ —2,H0

s
—̂2

. (11.11)

– Exact distribution: Under the assumptions (B1), (B3), (B4) and known error
variance, the following applies under H0:

t—2|X ≥ tn≠k. (11.12)

The test distribution is completely known under H0.

Proof:

Overview of procedure
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11.3. Exact tests

1. Reformulate the test statistic as the quotient (11.13) of the test statistic z—2

and a random variable for which the ‰2-distribution is shown in step 2.

2. Show that the denominator in (11.13) is ‰2-distributed.

3. Show that in (11.13) the normally distributed random variable in the numerator
and the ‰2-distributed random variable in the denominator are stochastically
independent.

4. According to (2.36), the t-distribution then applies.

The steps in detail:

1. Calculation: —̂2 remains the same and the variance of the parameter estimator
‡2

—̂2
is estimated by s2

—̂2
, so that under H0 we obtain:

t—2 =

Q

cccca

yT MXy
(n ≠ k)

¸ ˚˙ ˝
s2

R

ddddb

≠1/2

xT

2 M1u
(xT

2 M1x2)1/2

=
A

yT MXy
‡2

0(n ≠ k)

B≠1/2 xT

2 M1u
(‡2

0xT
2 M1x2)1/2 = z—21

s2

‡
2
0

21/2 . (11.13)

2. Derivation of the distribution of the random variables in the
denominator:

It holds that y
T

‡0
MX

y

‡0
= u

T

‡0
MX

u

‡0
= (n≠k)s2

‡
2
0

≥ ‰2(n ≠ k), since u/‡0 ≥ N(0, I)
and in the term u

T

‡0
MX

u

‡0
the projection matrix MX has just rank n ≠ k. This

results in a ‰2-distribution with n ≠ k degrees of freedom due to (2.35).

3. Stochastic independence of numerator and denominator

– Numerator:
xT

2 M1y = xT

2 PXM1y = xT

2 M1PXy

since x2 is already in the subspace of PX and

PX (I ≠ P1)¸ ˚˙ ˝
M1

= PX ≠ PXP1 = PX ≠ P1PX = M1PX.

Taking PXy = X— + PXu into account, the numerator

xT

2 M1y = xT

2 M1X— + xT

2 M1PXu

given X depends only on the random vector PXu.

– Denominator: is based on the square root of the quadratic form of MXu/‡0
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– Given X the random vectors are PXu in the numerator and MXu in the
denominator. Their covariance is zero, since

E
1
PXuuT MX|X1, x2

2
= PX‡2

0IMX = ‡2
0PXMX = 0,

since the respective subspaces are orthogonal to each other.

– Since PXu and MXu are both multivariate normally distributed on the basis of
the same vector u, the uncorrelatedness results in independence (cf. Davidson
(2000, Theorem C.4.1, S. 466)).

4. Validity of the t-distribution:

This means that the t-statistic (11.11) according to (2.36) is under H0
exactly t-distributed with n ≠ k degrees of freedom, since numerator
and denominator are stochastically independent, the numerator is standard
normally distributed, and in the denominator y

T

‡0
MX

y

‡0
is just ‰2(n ≠ k)

distributed and after division by the number of degrees of freedom results in
s2/‡2

0:

t—2|X = —̂2 ≠ —2,H0

s
—̂2

|X ≥ tn≠k. (11.14)

⇤

• The t-test can also be used to test more complicated single restrictions.

Scale elasticity of a Cobb-Douglas production function:

log Y = —1 + —2 log K + —3 log L + u

where Y , K and L denote output, capital and labour respectively. The null or
alternative hypothesis of linear scale elasticity

H0 : —2 + —3 = 1 versus H1 : —2 + —3 ”= 1

can be written with ◊ = —2 + —3 as

H0 : ◊ = 1 versus H1 : ◊ ”= 1,

where then with —3 = ◊ ≠ —2

log Y = —1 + —2(log K ≠ log L) + ◊ log L + u

is estimated. Alternatively, an F -test can also be carried out.
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11.3. Exact tests

11.3.2. F -tests: Testing multiple restrictions

An (economic) theory often implies several restrictions regarding the parameters of a regression
model.

• Examples of possible linear restrictions:

1. H0 : —2 = —k

2. H0 : —1 = 1, —k = 0

3. H0 : —1 = —3, —2 = —3

4. H0 : —j = 0, j = 2, . . . , k

5. H0 : —j + 2—j+1 = 1, —k = 2.

• All q Æ k linear restrictions can be represented in the following form:

H0 : R— = r vs. H1 : R— ”= r (11.15)

where the (q ◊ k) matrix R and the (q ◊ 1) vector r are given and fixed. When formulating,
it must of course be ensured that all restrictions in (11.15) are free of contradictions and
not redundant.

Illustrations of the examples:

1. H0 : —2 = —k … —2 ≠ —k = 0:

1
0 1 0 · · · 0 ≠1

2

Q

ccccccccca

—1
—2
—3
...

—k≠1
—k

R

dddddddddb

= 0.

2. H0 : —1 = 1, —k = 0:

A
1 0 · · · 0
0 0 · · · 1

B
Q

cccca

—1
—2
...

—k

R

ddddb
=

A
1
0

B

.

3. H0 : —1 = —3, —2 = —3:
A

1 0 ≠1
0 1 ≠1

B Q

ca
—1
—2
—3

R

db =
A

0
0

B

.
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4. H0 : —j = 0, j = 2, . . . , k:

Q

cccca

0 1 0 · · · 0
0 0 1 · · · 0
... ... ... . . . ...
0 0 0 · · · 1

R

ddddb

¸ ˚˙ ˝1
0 Ik≠1

2

Q

ccccccca

—1
—2
—3
...

—k

R

dddddddb

=

Q

cccca

0
0
...
0

R

ddddb

¸ ˚˙ ˝
((k≠1)◊1)

.

5. H0 : —j + 2—j+1 = 1, —k = 2:

A
0 · · · 1 2 · · · 0
0 · · · 0 0 · · · 1

B

Q

cccccccccca

—1
...

—j

—j+1
...

—k

R

ddddddddddb

=
A

1
2

B

.

Continuation Trade flows: Consider regression model

ln(Importsi) = —1 + —2 ln(GDPi) + —3 ln(Distancei)
+ —4 Opennessi + —5 ln(Area) + ui.

Question: Do the variables Openness and Area play a role in combination? In
other words: Are both parameters jointly statistically significant? The pair of
hypotheses is:

H0 : —4 = 0 and —5 = 0 versus
H1 : —4 ”= 0 and/or —5 ”= 0.

Writing the null hypothesis in matrix form H0 : R— = r

H0 :
A

0 0 0 1 0
0 0 0 0 1

B

¸ ˚˙ ˝
R

Q

cccccca

—1
—2
—3
—4
—5

R

ddddddb
=

A
0
0

B

¸ ˚˙ ˝
r

. (11.16)

F -test: overview and summary: (cf. section 5.6):

1. Pair of hypotheses with disjoint null and alternative hypothesis: q Æ k linear
restrictions can be tested, which can be represented in the following form:

H0 : R— = r vs. H1 : R— ”= r (11.15)

where the (q ◊ k) matrix R and the (q ◊ 1) vector r are given and fixed.
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11.3. Exact tests

2. Test statistic: The F -test statistic is:

F =

1
R—̂ ≠ r

2
T

5
R

1
XT X

2≠1
RT

6≠1 1
R—̂ ≠ r

2
/q

s2 ≥ Fq,n≠k (11.17)

The F -statistic (11.28) is F -distributed with q and n ≠ k degrees of freedom.

3. Decision rule for F -test: Reject H0 : R— = r if

F > Fq,n≠k,1≠–.

Alternatively: Reject H0 if p-value is lower than the significance level. (If ‡2
0 is known, in

F s2 is replaced by ‡2
0 and the 1 ≠ – quantile of the ‰2-distribution with n ≠ k degrees of

freedom is used, see (11.21).)

Derivation of the F -test statistic (11.17):

• How can you form a scalar test statistic for multiple hypotheses?

Basic idea: By summing the squared deviations
1
R—̂ ≠ r

2
T

1
R—̂ ≠ r

2
> critical value.

Is it possible to determine the probability distribution for the squared deviations?

• Distribution of R—̂ ≠ r:

– If the assumptions (B1) and (B3) are fulfilled, the following applies,

R—̂ = R—0 + R
1
XT X

2≠1
XT u

or

R
1
—̂ ≠ —0

2
= R

1
XT X

2≠1
XT u,

– If the errors are also multivariate normally distributed given X, i. e. assumption
(B4) applies, R

1
—̂ ≠ —0

2
is also multivariate normally distributed due to (2.33):

R
1
—̂ ≠ —0

2
|X ≥ N

3
0, ‡2

0 R
1
XT X

2≠1
RT

4
, (11.18)

where R
1
XT X

2≠1
RT has rank q, since rk(AB) = rk(A) if B is not singular (vgl.

Schmidt & Trenkler 2006, Rule 3.2.7).

Proof: Derivation of the variance:

V ar
1
R—̂ ≠ R—0|X

2
= V ar

1
R—̂|X

2
= RV ar

1
—̂|X

2
RT

= ‡2
0R

1
XT X

2≠1
RT

⇤

– Adding and subtracting r in R—̂ ≠ R—0 = R—̂ ≠ r + r ≠ R—0 yields:

R—̂ ≠ r|X ≥ N
3

R—0 ≠ r, ‡2
0 R

1
XT X

2≠1
RT

4
, (11.19)226



– Under H0 : R— = r, where — = —0 is contained, (11.19) simplifies to

R—̂ ≠ r|X ≥ N
3

0, ‡2
0 R

1
XT X

2≠1
RT

4
, (11.20)

• Distribution of the weighted sum of squares:

– Error variance ‡2
0 known: Due to the properties of the ‰2-distribution (2.34), under

H0 for the weighted sum of squares of the (q ◊ 1) normally distributed vector R—̂ ≠ r
(11.20), it holds that

1
R—̂ ≠ r

2
T

5
‡2

0R
1
XT X

2≠1
RT

6≠1 1
R—̂ ≠ r

2
≥ ‰2

q
. (11.21)

A weighted instead of an unweighted sum of the squared deviations of R—̂ ≠ r should
therefore be used as the test statistic, as the distribution under H0 is known for this if
the error variance ‡2

0 is known.

– Error variance ‡2
0 unknown: In the test statistic (11.21), the error variance ‡2

0 is in
the denominator. If ‡2

0 is replaced by the estimator s2, the denominator now also shows
a random variable. The following statistic is therefore a candidate for the F -distribution

1
R—̂ ≠ r

2
T

5
R

1
XT X

2≠1
RT

6≠1 1
R—̂ ≠ r

2

s2 . (11.22)

Check the requirements for the F -distribution, cf. (2.37): For a random variable to be
F -distributed, the numerator and denominator must be ‰2-distributed.

1. Numerator: Since (11.21) is ‰2-distributed, one divides the numerator and denomina-
tor of (11.22) by ‡2

0 so that the new numerator corresponds exactly to (11.21) and is
therefore ‰2-distributed:

1
R—̂ ≠ r

2
T

5
‡2

0R
1
XT X

2≠1
RT

6≠1 1
R—̂ ≠ r

2

s2/‡2
0

. (11.23)

2. Denominator: The denominator s2/‡2
0 must still be multiplied by n ≠ k, because

according to the previous section 11.3.1 for the t-test, the following applies,

(n ≠ k)s2/‡2
0 = yT MXy/‡2

0 = uT MT

X
MXu/‡2

0 ≥ ‰2
n≠k

. (11.24)

One obtains:
1
R—̂ ≠ r

2
T

5
‡2

0R
1
XT X

2≠1
RT

6≠1 1
R—̂ ≠ r

2

(n ≠ k)s2/‡2
0

. (11.25)

3. Are the numerator and denominator in (11.25) stochastically independent? Yes.
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11.3. Exact tests

Proof:

� The numerator and denominator can each be written as a quadratic form (cf.
section 9.3) xT

i
Aixi, i = Z, N :

� Numerator:

xZ = R—̂ ≠ r = R
1
XT X

2≠1
XT u,

AZ =
5
‡2

0R
1
XT X

2≠1
RT

6≠1

� Denominator: The term in (11.24) is also a quadratic form with

xN = MXu, (11.26)

AN = 1
‡2

0
I. (11.27)

� Since AZ and AN are known given X, the distribution properties of xZ

and xN are crucial. Due to assumption (B4), u given X is multivariate
normally distributed with expected value of zero. Therefore, xZ and xN given
X are also multivariate normally distributed with expected value of zero.
Since xZ and xN depend on the same multivariate normally distributed error
vector u, they are stochastically independent if they are uncorrelated, i. e.
Cov(xZ , xN |X) = E

Ë
xZxT

N
|X

È
= 0 applies. Substitution gives:

E
Ë
xZxT

N
|X

È
= E

5
R

1
XT X

2≠1
XT u(MXu)T |X

6

= R
1
XT X

2≠1
XT E

Ë
uuT |X

È
MX = ‡2

0R
1
XT X

2≠1
XT MX¸ ˚˙ ˝

=0

= 0

Numerator and denominator are ‰2-distributed because xZ and xN are multi-
variate normally distributed. If the latter are stochastically independent, this
must also hold for functions that depend on them, such as the quadratic forms
here. Therefore, the numerator and denominator in (11.25) are stochastically
independent.

⇤

4. Division by the correct number of degrees of freedom? Must still be done. I. e.
the numerator in (11.25) must be divided by the number of restrictions q. The
denominator in (11.25) must be divided by the correct number of degrees of freedom
n ≠ k. One obtains:

F =

1
R—̂ ≠ r

2
T

5
‡2

0R
1
XT X

2≠1
RT

6≠1 1
R—̂ ≠ r

2
/q

[(n ≠ k)s2/‡2
0] /(n ≠ k) .
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Note: ‡2
0 and n ≠ k are cancelled out so that (11.17) is obtained. This means that F

under H0 is an F -distributed test statistic
F ≥ Fq,n≠k. (11.28)

The F -statistic (11.28) is therefore F -distributed with q and n ≠ k degrees of freedom.

The test statistic F is called F -statistic.

Alternative notations of the F -statistic:

F =

1
R—̂ ≠ r

2
T

5
R

1
XT X

2≠1
RT

6≠1 1
R—̂ ≠ r

2
/q

s2 (11.17)

=

1
—̂ ≠ —0

2
T

RT

5
R

1
XT X

2≠1
RT

6≠1
R

1
—̂ ≠ —0

2
/q

yT MXy/(n ≠ k) (11.29)

Power of F -tests:

• It can be shown that under the alternative hypothesis, all quantiles of the distribution
of the F -statistic lie to the right of those of the F -distribution under H0. The further to
the right the quantiles under H1 are compared to the quantiles under H0 (e.g. due to an
increasing sample size n), the higher the power of the F -test.

Joint exclusion restrictions: further ways of calculating the F -statistic

• You can always rearrange the variables in a multiple regression model so that all exclusion
restrictions with regard to — in the model

y = X1¸˚˙˝
(n◊k1)

—1 + X2¸˚˙˝
(n◊k2)

—2 + u,

k = k1 + k2, can be summarised in —2.

The pair of hypotheses is then
H0 : —j = 0, j = k1 + 1, . . . , k1 + k2 … —2 = 0 versus
H1 : —k1+1 ”= 0 and/or . . . and/or —k1+k2 ”= 0 … —2 ”= 0.

The exclusion restrictions can then be written as

Q

cccca

0 · · · 0 1 0 · · · 0
0 · · · 0 0 1 · · · 0
... . . . ... ... ... . . . ...
0 · · · 0 0 0 · · · 1

R

ddddb

¸ ˚˙ ˝1
0k2◊k1 Ik2

2

Q

cccccccccccca

—1
...

—k1≠1
—k1

—k1+1
...

—k

R

ddddddddddddb

=

Q

cccca

0
0
...
0

R

ddddb

1
0k2◊k1 Ik2

2
— = 0k2◊1.
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11.3. Exact tests

In this case, there are further ways of calculating the F -statistic (see also bachelor course
Introduction to Econometrics) by estimating the restricted and unrestricted model
separately:

1. Restricted regression: Regress y exclusively on X1 and store the residual sum of
squares SSR1 = ũT ũ or, in the case of a constant contained in X1, also R2

1.

2. Unrestricted regression: Regress y on X =
1
X1 X2

2
and store SSR = ûT û bzw.

R2.

The further calculation options are (note q = k2):

F = (SSR1 ≠ SSR)/k2

SSR/(n ≠ k) (11.30)

=

1
ũT ũ ≠ ûT û

2
/k2

ûT û/(n ≠ k)

= (R2 ≠ R2
1)/k2

(1 ≠ R2)/(n ≠ k) (11.31)

≥ Fk2,n≠k.

Continuation Trade flows: Testing the null hypothesis (11.16):

– Determine the critical value c: Calculate 1≠–-quantile of the F2,44-distribution
with R command qf(1-alpha,2,44). For – = 0.05 one obtains 3.209278.

– Calculating the F -statistic and the p-value is most easily done with the R
command linearHypothesis (requires R package car):

R code (Extract from R program in section A.4)

################################################################################
################################################################################
# Section 11.3 Exact Tests
################################################################################

alpha <- 0.05 # Significance level
# Estimating model 4
mod_4_kq <- lm(log(trade_0_d_o) ~ log(wdi_gdpusdcr_o) +

log(cepii_dist) + ebrd_tfes_o + log(cepii_area_o))
summary(mod_4_kq)

Listing 11.1: ./R_code/4_�_Beispiel_Handelsstroeme_eng.R

and yields
Hypothesis:
ebrd_tfes_o = 0
log(cepii_area_o) = 0
Model 1: restricted model
Model 2: log(trade_0_d_o) ~ log(wdi_gdpusdcr_o) + log(cepii_dist)
+ ebrd_tfes_o + log(cepii_area_o)

Res.Df RSS Df Sum of Sq F Pr(>F)
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1 46 39.645
2 44 32.018 2 7.6272 5.2408 0.009088 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

– The null hypothesis is rejected. At least one of the two variables Openness or
log(Area) is significantly di�erent from zero at the 5% level.

Proof: ˘ Possibilities of proof for (11.30) and (11.31)

– 1st possibility of proof : using the formula for the inversion of partitioned
matrices

– 2nd possibility of proof : with the help of the Frisch-Waugh-Lovell theorem:

1. Note that the residual sum of squares of the unrestricted model

SSR = yT MXy

using the decomposition of the residual sum of squares and the Frisch-
Waugh-Lovell theorem, see section 7.1, based on the regression

M1y = M1X2—2 + Residuals

can also be written as

SSR = TSS ≠ ESS

= yT M1y ≠ yT M1PM1X2M1y

= yT M1y ≠ yT M1 M1X2
1
XT

2 M1M1X2
2≠1

XT

2 M1
¸ ˚˙ ˝

PM1X2

M1y

= yT M1y ≠ yT M1X2
1
XT

2 M1X2
2≠1

XT

2 M1y.

2. The numerator in the F -statistic (11.30) is then

SSR1 ≠ SSR = yT M1y ≠
5
yT M1y ≠ yT M1X2

1
XT

2 M1X2
2≠1

XT

2 M1y
6

= yT M1X2
1
XT

2 M1X2
2≠1

XT

2 M1y (11.32)
= uT PM1X2u.

The last equal sign holds, since under H0 M1y = M1u (verify!).

3. Since PM1X2 is a projection matrix with rank k2 it follows from the property
(2.35) of the ‰2-distribution that for normally distributed errors under H0

SSR1 ≠ SSR = u
‡

T

PM1X2
u
‡

≥ ‰2(k2).
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11.3. Exact tests

The following applies to the denominator,

SSR = u
‡

T

MX

u
‡

≥ ‰2(n ≠ k).

Numerator and denominator are therefore both ‰2-distributed.

The random vectors in the numerator PM1X2u and denominator MXu have
covariance zero, since

MXM1 = M1MX

and consequently
MXM1X2 = M1MXX2 = 0

(the columns of X2 are contained in the orthogonal space of MX) and thus
E

Ë
PM1X2uuT MX

È
= 0. Due to the multivariate normal distribution as-

sumption, the random vectors are therefore also stochastically independent.

Thus, based on the definition of the F -distribution

F = (SSR1 ≠ SSR)/k2

SSR/(n ≠ k) ≥ Fk2,n≠k.

⇤

• Due to (11.32), there is another notation of the F -statistic (11.30)

F =
yT M1X2

1
XT

2 M1X2
2≠1

XT

2 M1y/k2

yT MXy/(n ≠ k) (11.33)

• The F -statistic (11.30) can also be used for general linear restrictions. For this, however,
the model under H0 must be suitably transformed, see bachelor course Introduction to
Econometrics.

Other well-known F -tests:

• Single hypothesis: F -statistic is square of the t-statistic and corresponds to a two-sided
t-test.

• Chow test for structural breaks: Test for constancy of all/some parameters across 2
subsamples, each indexed by I and II. If they are not constant, a separate estimate must
be made for each subsample

yI = XI—I + uI (11.34a)
yII = XII—II + uII . (11.34b)

The null hypothesis (parameter constancy) is

H0 : —I = —II .
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Thus, under H0 the model
y = X— + u

is to be estimated.

Under H1, on the other hand, elements of —II and —I can di�er and one estimates in matrix
notation with

y =
A

yI

yII

B

, X =
A

XI

XII

B

the model
y = X— +

A
O

XII

B

“ + u.

The pair of hypotheses is

H0 : “ = 0 versus H1 : “j ”= 0 for at least one j.

If, in addition to (B1), (B3), (B4), the subsamples are stochastically independent, the
Chow test is exact.

Pivotal tests

• Definition: A random variable, e. g. a test statistic under H0, with the property that its
distribution is the same for all DGPs in a model M is called pivotal for the model M.

• The null hypothesis rarely specifies the complete DGP. If this is the case, it is referred to
as a simple hypothesis.

• In general, the model contains several di�erent DGPs under the null hypothesis: compound
hypothesis. If the exact distribution of a test of a compound null hypothesis depends
on the DSP that generated the sample data, the test statistic is not pivotal, as the test
distribution changes depending on the specific DSP for the same null hypothesis. An
exception are exact tests.

• Possible solutions for all other cases:
– Without knowledge of the DGP: asymptotically pivotal tests, see next section 11.4,

i. e. the asymptotic distribution of the test statistic is pivotal.
– With knowledge of the DGP: Monte Carlo tests, see section 11.5.1.
– Without knowledge of the DGP: bootstrap tests, see section 11.5.2.

11.4. Asymptotic tests

The normal multiple linear regression model is given by

y = X— + u, u|X ≥ N(0, ‡2I).

If the assumption (B2) of (strictly) exogenous regressors is not fulfilled, for example due to
lagged endogenous variables as regressors or the assumption (B4) of normally distributed
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11.4. Asymptotic tests

errors, then the exact distribution of the t-statistic and the F -statistic from section 11.3
cannot generally be determined analytically. Even if this were possible, the distribution of the
t-statistic would generally not be pivotal.

• Under assumptions (B1), (B2), (B3), (A1) and (A3), the introduced t-tests and F -tests
are asymptotically valid, since the OLS estimator is asymptotically normally distributed.

• The results also remain valid under the assumptions of the dynamic linear regression model
(C1), (C2), (C3) and (C4a) or (C4b), see section 13.4.

11.4.1. Asymptotic t-test

Here: The parameter to be tested in the linear regression model

y = X1—1 + x2—2 + u, ut|Xt ≥ (0, ‡2), t = 1, . . . , n.

is —2.

Asymptotic t-test: Overview

1. The pair of hypotheses is: H0 : —2 = —2,H0 versus H1 : —2 ”= —2,H0 .

2. Test statistic and test distribution: Under H0, it holds that

t—2 = —̂2 ≠ —2,H0

s
—̂2

= z—2

(s2/‡2
0)1/2

d≠æ N(0, 1).

3. Decision rule: analogue to decision rule for two-tailed or one-tailed tests.

Note: In practice, the t-distribution with n ≠ k degrees of freedom is usually used,
as this often provides a better approximation of the (unknown) exact distribution than the
standard normal distribution.

Derivation of the asymptotic distribution

1. Denominator: Under H0, it holds that

plim
næŒ

1
s2/‡2

0

21/2
= 1.

2. Numerator: The numerator in (11.13) is expanded with n≠1/2 to

z—2 = n≠1/2xT

2 M1u
‡0(n≠1xT

2 M1x2)1/2

and obviously has an expected value of 0 and a variance of 1, as the variance of the
numerator is equal to the square of the denominator (verify both!).
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3. Assuming that the regularity conditions for a multivariate central limit theorem for
n≠1/2xT

2 M1u (i. e for (A1), (A3)) are fulfilled, we obtain

z—2
d≠æ N(0, 1).

4. Using the rule, see section 3.4, "‘If an

d≠æ a and plim An = A, then Anan

d≠æ Aa"’ it
follows that

t—2 =
1
s2/‡2

0

2≠1/2

¸ ˚˙ ˝
P≠æ1

z—2¸˚˙˝
d≠æN(0,1)

d≠æ N(0, 1) (11.35)

Then the standard normal distribution is obtained again asymptotically under H0 and all
properties of the t-test remain asymptotically valid.

11.4.2. Asymptotic F -test

Asymptotic F -test: Overview

1. Pair of hypotheses with disjoint null and alternative hypothesis: as for exact
F -test.

2. Test statistic and test distribution: Under H0, it holds that

qFn =
1
R(—̂ ≠ —0)

2
T

Ë
s2R(XT X)≠1RT

È≠1 1
R(—̂ ≠ —0)

2
d≠æ ‰2(q) (11.36)

In small samples, the F -statistic is often used directly instead together with an (approximate)
F -distribution with q and n ≠ k degrees of freedom, as this often provides a better
approximation of the (unknown) exact distribution than the ‰2-distribution.

3. Decision rule:

qF > ‰2
q,1≠–

(11.37)
F > Fq,n≠k,1≠– (11.38)

Alternatively: Reject H0 if p-value (based on the asymptotic distribution) is lower than
the significance level.

Derivation of asymptotic F -test

• If the relevant assumptions, cf. beginning of the section, are fulfilled, so that
Ô

n
1
—̂ ≠ —0

2
d≠æ N

1
0, ‡2

0S≠1
XT X

2

applies, an asymptotic ‰2-distribution follows from the theorem about continuous mappings
(3.3) and the properties of the ‰2-distribution (2.34):

n
1
—̂ ≠ —0

2
T

Ë
‡2

0S≠1
XT X

È≠1 1
—̂ ≠ —0

2
d≠æ ‰2(k). (11.39)
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11.4. Asymptotic tests

• Asymptotic distribution of the F -statistic (11.28): Using Anan

d≠æ Aa, cf. section 3.4, we
obtain again (11.39) from (11.28) together with plim

næŒ s2 = ‡2
0 and (A1) (or (C3)) after

multiplying by q. This means that under H0

qFn =
1
R—̂ ≠ r

2
T

Ë
s2R(XT X)≠1RT

È≠1 1
R—̂ ≠ r

2
d≠æ ‰2(q). (11.36)

• In the case of exclusion restrictions, the F -statistic (11.28) can alternatively be written as
(11.33) under H0. In this case, of course, the following also applies

qFn = q
yT M1X2

1
XT

2 M1X2
2≠1

XT

2 M1y/q

yT MXy/(n ≠ k)
d≠æ ‰2(q). (11.40)

• Since it holds (cf. section 2.9) that for n æ Œ a sequence of F -distributed random variables
Xn ≥ F (q, n ≠ k) converges to a ‰2-distribution,

qXn

d≠æ ‰2(q), (11.41)

Fn can also be approximated by an F (q, n ≠ k) distribution, which in small samples often
provides a better approximation than the ‰2-distribution.

Power: It can be shown that the following applies under H1,

qF
næŒ≠æ Œ. (11.42)

This means that the power for n æ Œ approaches 1 asymptotically, since limnæŒ P (qF >
c) = 1. In finite samples, the power is typically less than 1.

Actual versus nominal size

• Actual size: Size of a test (5.78), which results from the exact but possibly unknown
distribution.

• Nominal size: Size of a test that results on the basis of the asymptotic distribution.

• Since the exact distribution for each DGP and sample size is known for exact tests, the
nominal and actual significance levels match.

• In asymptotic tests, the closer the asymptotic distribution approximates the actual distri-
bution (which generally depends on the DGP and the number of observations), the closer
the nominal and actual significance levels are. For predetermined DGPs, the degree of
similarity can be determined using Monte Carlo simulations.

• For asymptotic tests, the actual size is unknown. Therefore, the critical value is chosen so
that the nominal size corresponds to the chosen significance level.

• A test is called “oversized” if the actual size (e. g. determined by simulations) is greater
than the significance level. 236



11.5. Monte Carlo tests and bootstrap tests

11.5.1. Monte Carlo tests

• Empirical distribution function of the observed sample elements xt, t = 1, . . . , n:

F̂ (x) = 1
n

nÿ

t=1
1(xt Æ x), (11.43)

where 1(·) denotes the indicator function

1(A) =

Y
]

[
1 if A is true
0 if A is false.

(11.44)

Fundamental Theorem of Statistics The empirical distribution function is consistent
in the case of i.i.d. random variables

plim F̂ (x) = F (x). (11.45)

The i.i.d. assumption can be weakened.

• Notation in this section: · denotes an arbitrary test statistic and ·̂ = ·̂(X, y) a value of
the test statistic · calculated on the basis of sample observations.

• The exact p-value of a calculated test statistic ·̂ with right-tailed critical value results
(cf. (5.85)) from

p(·̂) := P (· > ·̂ |◊H0) = 1 ≠ P (· Æ ·̂ |◊H0) = 1 ≠ F (·̂ |◊H0), (11.46)

where F (·|◊H0) denotes the exact distribution of the calculated test statistic ·̂ under H0.

As a reminder: Reject H0 if p(·̂) < – or ·̂ > c–.

If F (·|◊H0) is unknown, the test distribution can be approximated as accurately as required
by the empirical distribution function, if the DGP is completely known or the test
is pivot. The greater the number of replications (Monte Carlo simulations) B, the more
accurate the approximation. The computer-simulated p value is

p̂(·̂) = 1 ≠ F̂ (·̂ |◊H0) = 1 ≠ 1
B

Bÿ

j=1
1(· ú

j
Æ ·̂), (11.47)

where · ú
j

is the value of the test statistic in the j-th simulation under H0.

• Performing a Monte Carlo test requires the generation of random numbers using a random
number generator, see e. g. Davidson & MacKinnon (2004, S. 157-159).

11.5.2. Bootstrap tests

• The idea of a bootstrap test is to estimate the unknown DGP and then apply the Monte
Carlo test technique.

237



11.5. Monte Carlo tests and bootstrap tests

• Necessary condition: All necessary properties of the DGP can be estimated consistently
with a suitable convergence rate.

• Example: Multiple regression model

yt = —1xt1 + · · · + —kxtk + ut, ut|X ≥ IID(0, ‡2)

We want to test
H0 : —k = 0 versus H1 : —k ”= 0.

The bootstrap test works if, among other things,

– — and ‡2 can be estimated consistently with rate
Ô

n and

– the distribution of u given X is known or can be estimated accordingly.

Generate bootstrap samples

• Estimate — with a consistent and as e�cient as possible estimator and calculate the desired
test statistic ·̂ .

– One can estimate — under H1 and gets the OLS residual vector û.

– One can estimate
1
—1 . . . —k≠1

2
T

under H0 and gets the OLS residual vector ũ.

In general, better results are obtained if the estimation is carried out under H0.

• Assumption i.i.d. normally distributed errors (Assumption (B4)): Parametric
bootstrap One can then estimate ‡2 and generate the n error variables in uú

j
from

N(0, s2I) for each bootstrap sample (yú
j
, Xj).

1. Then, for the jth bootstrap sample, the vector of dependent variables under H0 can be
iteratively generated by

yú
jt

= —̃1xt1 + · · · + —̃k≠1xt,k≠1 + uú
jt

, t = 1, 2, . . . , n.

2. For the j-sample (yú
j
, Xj), the test statistic, here the squared t-test (=F -test), can then

be calculated by estimating the unrestricted model

· ú
j

=
1
tú
j

22
, tú

j
= —̂ú

jk
/‡̂ú

j,—̂
ú
jk

.

After B replications, the empirical distribution function is then calculated and the bootstrap
p-value is obtained according to (11.47) from

p̂(·̂) = 1 ≠ B≠1
Bÿ

j=1
1

1
· ú

j
Æ ·̂

2
.

• Assumption i.i.d. errors (Assumption (B2)): Nonparametric / Semiparametric
bootstrap
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1. Under H0 the OLS parameter estimators are consistent and so are the estimated errors

plim
næŒ

ũt = plim
næŒ

1
yt ≠ —̃n1xt1 ≠ · · · ≠ —̃n,k≠1xt,k≠1

2

= yt ≠ xt1 plim
næŒ

—̃n1 ≠ · · · ≠ xt,k≠1 plim
næŒ

—̃n,k≠1

= yt ≠ —1xt1 ≠ · · · ≠ —k≠1xt,k≠1 = ut.

2. ’Asymptotically’, one can also draw from the errors with replacement (resampling),
because due to the Fundamental Theorem of Statistics, the empirical distribution of the
ut’s approximates the true error distribution.

3. Due to the consistency of the residual estimator, the residuals can also be used instead
of the unknown errors.

4. Refinements:

– rescaled residuals

ũ+
t

= ũt

A
n

n ≠ kH0

B1/2

.

This corrects the variance of the residuals, which is smaller than the variance of the
errors (cf. section 9.5), so that it corresponds to the estimated variance of the errors
s2.

– centred and rescaled residuals

ũ+
t

=
1
ũt ≠ ¯̃u

2 A
n

n ≠ kH0

B1/2

.

This is necessary if, for example, the regression model does not contain a constant,
because then the mean value of the residuals is not equal to zero and thus the
bootstrap test is biased.

• Wild Bootstrap and Block Bootstrap: In the case of heteroscedastic and autocorrelated
errors, the above methods do not work. More complicated methods are required here.

• Number of bootstrap replications: Choose B so that the quantile, cf. (2.8) in section
2.5.1, can be determined exactly for type I errors:

– In total, there are B + 1 rank positions r for the test statistic ·̂ . Example: B = 2, where
the ranks are arranged in descending order (cf. Davidson & MacKinnon (2004), p. 164):

r = 2 : ·̂ < min
j

(· ú
j
), r = 1 : min

j

(· ú
j
) < ·̂ < max

j

(· ú
j
), r = 0 : max

j

(· ú
j
) < ·̂

– If you divide the rank position r by the number of bootstrap replications B, you get the
p-value for ·̂ , because 0 = 0

B
Æ r

B
Æ B

B
= 1.

– This means that the bootstrap test rejects under H0 if r/B < –, where – denotes the
chosen significance level. Therefore r < B– applies.
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11.6. Confidence intervals and ellipsoids

– Let ÂxÊ denote the largest integer number that is smaller than x. Then, for a given B–,
the number of rank positions for which H0 is rejected can be expressed as ÂB–Ê + 1.
Example: B = 9 and – = 0.5. This means that the null hypothesis is rejected for
r = 0, 1, 2, 3, 4. There are ÂB–Ê + 1 = Â4.5Ê + 1 = 5 rank positions with rejection.

– Since there are a total of B + 1 rank positions,

ÂB–Ê + 1
B + 1

must be equal to –. Given –, B is therefore determined from

–(B + 1) = Â–BÊ + 1.

For – = 0.05, for example, B = 99 makes sense.

Remarks

• Bootstrap test instead of asymptotic test?

If

– the distribution of the test statistic is asymptotically pivotal and

– the errors of the model are i.i.d. (otherwise more complicated bootstrap methods must
be used, e.g. block bootstrap for correlated errors),

then the distribution of the bootstrap test converges faster with increasing sample size
to the (unknown) exact distribution of the test statistic than the asymptotic distribution,
more precisely with n≠1 instead of n≠1/2. This explains the widespread use of bootstrap.

• Caution: If the test statistic is not asymptotically pivotal, then the bootstrap test and
the asymptotic test have the same convergence rate, so bootstrap is useless.

• Bootstrap methods can also be used for dynamic regression models under certain conditions.
In this case, Xú

j
is also generated for the jth sample (yú

j
, Xú

j
). For the implementation in a

simple example, see Davidson & MacKinnon (2004, p. 160).

• Further reading: e. g. Horowitz (2001), Horowitz (2003).

11.6. Confidence intervals and ellipsoids

11.6.1. Confidence intervals

• Definition: Confidence interval:

– A random interval that can be calculated on the basis of sample information (y, X) and
contains the true parameter value ◊0 with probability 1 ≠ – is called a confidence interval.
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(It follows that for a large number of samples all generated by the same DGP, the true
parameter value should be approximately contained in 1 ≠ – of all calculated confidence
intervals).

– Davidson & MacKinnon (2004, Chapter 5) choose an alternative definition: If all null
hypotheses (regarding a parameter)

H0 : ◊ = ◊H0 ,

that are not rejected at a given significance level of – are summarised in an interval, a
confidence interval with a confidence level of

1 ≠ –

is obtained.

– Formal: Given a non-negative test statistic ·(y, X, ◊H0) and a significance level –, a
confidence interval contains all ◊H0 for which the following applies,

KI =
Ó
◊H0|P◊H0

(·(y, X, ◊H0) Æ c–) = 1 ≠ –
Ô

, (11.48)

where P◊H0
(·) means that the probability is calculated under the respective null hypothesis

H0 and c– is the critical value at the significance level –.

– The bounds [◊l, ◊u] of the confidence interval are obtained by solving

·(y, X, ◊) = c–

for ◊ and result, so to speak, from "‘inverting"’ the test statistic ·(y, X, ◊H0).

• The length and bounds of confidence intervals are random, as they depend on the sample
y, X.

• The coverage probability indicates the probability of drawing a sample and calculating
a confidence interval based on it, which contains the true parameter ◊0.

• If a sample is already available, then the true parameter ◊0 is either contained in the
confidence interval calculated on the basis of the observed sample or not. In other words,
it makes no sense to speak of a coverage probability with regard to the sample in question
in the case of a already available sample.

• Exact confidence intervals cover the true parameter ◊0 with a coverage probability of
1 ≠ –. This is the case if the test statistic in (11.48) is pivotal.

• If the test statistic in (11.48) is not pivotal, but asymptotically pivotal, i. e. its asymp-
totic distribution is known for all DGPs under the null hypothesis and independent of
the respective DGP in the model under consideration M, then a asymptotic confidence
interval is obtained.

• With asymptotic confidence intervals, the actual and nominal (chosen) coverage probabil-
ities generally do not coincide. If several methods are available for calculating approximate
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11.6. Confidence intervals and ellipsoids

confidence intervals, one should choose the one for which the di�erence between the actual
and nominal coverage probability is as small as possible.

• If a parameter vector is considered instead of a parameter, multidimensional confidence
ellipsoids are obtained, see section 11.6.2.

• Asymptotic confidence interval for —j in the multiple linear regression model
based on the ‰2-statistic

·(y, X, —j,H0) =
Q

a —̂j ≠ —j,H0

s
—̂j

R

b
2

with
s

—̂j
= s(xT

j
M≠jxj)≠1/2,

where M≠j = I ≠ X≠j

1
XT

≠j
X≠j

2≠1
XT

≠j
and X≠j contains all regressors except the j-th

regressor.

– The bounds of the confidence interval result from
Q

a —̂j ≠ —j,H0

s
—̂j

R

b
2

= c– = q1≠–

(as above by solving for —j,H0) as

[—̂j ≠ s
—̂j

c1/2
–

, —̂j + s
—̂j

c1/2
–

].

– For – = 0.05, we get c1/2
–

=
Ô

3.84 = 1.96 = z1≠–/2 for the (1 ≠ –) quantile c– = q1≠– of
the ‰2-distribution, where z— denotes the — quantile of the standard normal distribution.

– This interval is identical to the interval obtained on the basis of the t-statistic if its
asymptotic standard normal distribution is taken into consideration.

– Asymmetric confidence intervals are possible on the basis of the t-statistic, for example.
When do you want an asymmetric confidence interval?

• An exact confidence interval for —j in the normal linear model is determined on
the basis of the t-statistic and the t-distribution with n ≠ k degrees of freedom:

P

Q

at–/2(n ≠ k) Æ —̂j ≠ —j,H0

s
—̂j

Æ t1≠–/2(n ≠ k)
R

b = 1 ≠ –

provides
[—̂j ≠ s

—̂j
t1≠–/2(n ≠ k), —̂j ≠ s

—̂j
t–/2(n ≠ k)]

resp.
[—̂j ≠ s

—̂j
t1≠–/2(n ≠ k), —̂j + s

—̂j
t1≠–/2(n ≠ k)].
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• Relationship t-test and confidence interval: Since a two-tailed t-test corresponds to
an F -test if the t-statistic is squared, it follows from the construction of confidence intervals
carried out here that the null hypothesis of a two-tailed t-test with significance level –
cannot be rejected if and only if the null hypothesis lies within the confidence interval with
confidence level 1 ≠ –.

• Bootstrap confidence intervals

– Calculation of the critical values by bootstrap, see section 11.5.2.

– Important: Compared to an asymptotic confidence interval, a bootstrap confidence
interval can only converge faster towards the exact confidence interval if the associated
asymptotic distribution of the test statistic is pivotal!

– There are various methods for carrying out the bootstrap.

There are di�erences with regard to

� the estimation method for the parameters (—, ‡0) of the DGP,

� the bootstrap procedure for drawing the errors,

� the choice of the t-statistic or the F -statistic as the basis.

– If the t-statistic is used, the boostrap distribution is often asymmetric and the bounds of
the confidence interval must be determined carefully, see Davidson & MacKinnon (2004,
Section 5.3).

– Confidence intervals based on the t-statistic are often referred to as studentized
bootstrap confidence interval or as percentile-t or bootstrap-t confidence interval.

11.6.2. Confidence ellipsoids

• If (11.39) holds and R = Ik is chosen, the boundary of the approximate confidence ellipsoid
results from

·(y, X, —0) = kFn = c– = q1≠–.

• If the normal distribution applies exactly to the OLS estimators, then exact confidence
ellipsoids can also be determined on the basis of the F -statistic and the corresponding
critical value from the F -distribution with q and n ≠ k degrees of freedom.

• It can happen that a parameter vector — lies in a confidence ellipsoid, but not in the
individual confidence intervals for the individual elements of — and vice versa (please verify
graphically!). The reason for this is generally a strong collinearity between the individual
parameter estimators. Cf. discussion in bachelor course Introduction to Econometrics.

• Confidence ellipse: two-dimensional confidence ellipsoid, example in section 11.7.
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11.7. Empirical analysis of trade flows: Part 3

• Confidence ellipsoids can be calculated using the bootstrap method as in the one-dimensional
case.

11.7. Empirical analysis of trade flows: Part 3

Continuation of Empirical analysis of trade flows: Part 2 in section 10.3.

Repeat the estimation of the model 4 selected in step II.3 (based on the AIC),

ln(Importsi) = —1 + —2 ln(GDPi) + —3 ln(Distancei)
+ —4 Opennessi + —5 ln(Area) + ui.

(11.49)

R code see section 10.3

Output:
Call:
lm(formula = mod_formula)

Residuals:
Min 1Q Median 3Q Max
-2.1825 -0.6344 0.1613 0.6301 1.5243

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.42778 2.13258 1.138 0.2611
log(wdi_gdpusdcr_o) 1.02502 0.07654 13.392 < 2e-16 ***
log(cepii_dist) -0.88865 0.15614 -5.691 9.57e-07 ***
ebrd_tfes_o 0.35315 0.20642 1.711 0.0942 .
log(cepii_area_o) -0.15103 0.08523 -1.772 0.0833 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.853 on 44 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.9062, Adjusted R-squared: 0.8976
F-statistic: 106.2 on 4 and 44 DF, p-value: < 2.2e-16

4. Check the selected model (Part 1):

• Test the underlying model assumptions: Either

– (B1), (B3), (B4) (cf. section 11.3), so that exact tests can be performed, or

– (B1), (B2), (B3), (A1) and (A3), so that asymptotic tests can be performed.

• Example of an assumption check: Does the assumption of homoscedastically dis-
tributed errors (B2b), which is also an assumption for (B4), hold?

Plot of the residuals against the fitted values ŷ = X—̂ with

R code (Extract from R program in section A.4)
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test=c("Chisq"))
F_stat

################################################################################
# Section 11.7 Empirical analysis of trade flows
################################################################################

# Model 4 was calculated in section 10.3

Listing 11.2: ./R_code/4_�_Beispiel_Handelsstroeme_eng.R

or with
plot(mod_4_kq,which=1)
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– Under the assumptions mentioned above, residuals are consistent estimators of the
errors, i. e.
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ût = ut,
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11.7. Empirical analysis of trade flows: Part 3

so that in large samples, consideration of the residuals comes close to consideration of
the unknown errors.

– ŷ = X—̂ = PXy lies in the subspace of X.

Therefore, a dependence of the dispersion of the residuals ût on ŷt indicates that the
distribution of the errors depends on one or more regressors.

The cause may be

– a violation of the assumption of homoscedastic errors or

– a misspecified regression function.

Visually di�cult to say in this case, therefore better: use heteroscedasticity tests, see
section 15.2, or tests for correct specification of the functional form, see section 15.3.

• Check for a possible violation of the assumption of normally distributed errors
(B4).

– Plot of a histogram and an estimated density of the residuals as well as a normal
distribution density with corresponding variance and calculation of various key figures
with

R code (Extract from R program in section A.4)

trade_0_d_o_fit <- mod_4_kq$fitted # Fitted values of model 4

# Plot of residuals vs. fitted values
if (save.pdf) pdf("plot_fits_vs_resids_mod_4.pdf", 6, 6)
plot(trade_0_d_o_fit, resid_mod_4_kq, col = "blue", pch = 16, main = "Scatterplot")
if (save.pdf) dev.off()

# Plot of the histogram of the residuals
if (save.pdf) pdf("plot_hist_resids_mod_4.pdf", 6, 6)
hist(resid_mod_4_kq, breaks = 20, col = "lightblue", prob = T, main = "Histogram")

# Estimated density of the residuals
lines(density(resid_mod_4_kq),col = "black", prob = T, add="T")

# Plot the corresponding theoretical normal distribution
curve(dnorm(x, mean = mean(resid_mod_4_kq), sd = sd(resid_mod_4_kq)),

Listing 11.3: ./R_code/4_�_Beispiel_Handelsstroeme_eng.R

– Calculation of statistical measures of the residuals, including a normality test
((Lomnicki-)Jarque-Bera test, see section 15.4). The (Lomnicki-)Jarque-Bera test
can be calculated with R command jarque.test(model_kq)(requires R package
moments).
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Median 1.612610e-01
Maximum 1.524291e+00
Minimum -2.182553e+00
Std. Dev. 8.167224e-01
Skewness -6.341491e-01
Kurtosis 3.084715e+00
Jarque Bera 3.298837e+00
Probability 1.921616e-01

The smaller the p-value of the normality test, the more likely one can expect the
approximation error of the asymptotic normal distribution to be small for strictly
exogenous regressors.

p-value of the (Lomnicki-)Jarque-Bera test contradicts visual impression: Assumption
of normally distributed errors is not rejected because p-value is too large.

• even better than histogram: Plot of an estimated density and comparison with the
density of the normal distribution with the estimated error variance.

See section 15.7 for continuation of the model checking Checking of the selected model
(part 2).

5. Using the checked model: confidence intervals and performing tests:

• Confidence intervals

– Choice of a confidence level 1 ≠ –, in the following 95%.

– Calculation of the confidence intervals of all estimated regression parameters with

R code (Extract from R program in section A.4)
legend("topleft", c("est. density","theoretical\nnormal distribution"),

col = c("black","red"), lwd = 2, lty = c(1,2), bty = "n")

Listing 11.4: ./R_code/4_�_Beispiel_Handelsstroeme_eng.R

provides:
2.5 % 97.5 %
(Intercept) -1.87014867 6.72570228
log(wdi_gdpusdcr_o) 0.87076944 1.17927579
log(cepii_dist) -1.20331827 -0.57397436
ebrd_tfes_o -0.06286079 0.76916951
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log(cepii_area_o) -0.32280233 0.02074077

• Two-tailed test

– Statistical pair of hypotheses:

H0 : The GDP elasticity of imports is 1. versus H1 : The elasticity is not equal to 1.
H0 : —2 = 1 versus H1 : —2 ”= 1.

– Choose significance level, e. g. – = 0.05.

Calculation of the (approximate) critical values: n ≠ k = 49 ≠ 5 = 44 degrees of free-
dom. Since the t-statistic is exactly t-distributed under strict assumptions, but under
weaker assumptions the t-distribution is a good approximation, the (approximate)
critical values are determined on the basis of the t-distribution:

R code (Extract from R program in section A.4)

#### Confidence intervals
confint(mod_4_kq)

Listing 11.5: ./R_code/4_�_Beispiel_Handelsstroeme_eng.R

≠c = ≠2.015368, c = 2.015368

– Calculate t-statistic using the appropriate line of the output
Coefficients:
Estimate Std. Error t value Pr(>|t|)
log(wdi_gdpusdcr_o) 1.02502 0.07654 13.392 < 2e-16 ***

with R command

R code (Extract from R program in section A.4)
# Two-tailed test

# Determining the critical values

Listing 11.6: ./R_code/4_�_Beispiel_Handelsstroeme_eng.R

t—2 = —̂2 ≠ —2,H0

s
—̂2

= 1.02502 ≠ 1
0.7654 = 0.3269286

– Decision: Since test statistic

≠c <t—2 < c

≠2.015368 <0.3269286 < 2.015368

is outside the (approximate) critical range, do not reject the null hypothesis.
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– (Approximate) p-value is 0.7452378, calculated with

R code (Extract from R program in section A.4)
qt(alpha/2,mod_4_kq$df)
qt(1-alpha/2,mod_4_kq$df)

Listing 11.7: ./R_code/4_�_Beispiel_Handelsstroeme_eng.R

Since p-value is greater than the chosen significance level, H0 cannot be rejected (even
if a significance level of 10% is chosen).

The p-value states that under H0 in about 75 out of 100 samples a t-statistic would
be obtained whose absolute value is at least 0.33.

– If there is already an (approximate) confidence interval for —2 with confidence level
1 ≠ –: If the value of the null hypothesis is within the confidence interval, H0 is not
rejected.

An alternative that is faster: Using the R command linearHypothesis (requires R
package car).

Note: it calculates F = t2, p-values based on the F1,n≠k-distribution

R code (Extract from R program in section A.4)
# p-value

2*pt(-abs(t),mod_4_kq$df)

Listing 11.8: ./R_code/4_�_Beispiel_Handelsstroeme_eng.R

Linear hypothesis test

Hypothesis:
log(wdi_gdpusdcr_o) = 1

Model 1: restricted model
Model 2: log(trade_0_d_o) ~ log(wdi_gdpusdcr_o) + log(cepii_dist) + ebrd_tfes_o +
log(cepii_area_o)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 45 32.095
2 44 32.018 1 0.077776 0.1069 0.7453

• One-tailed test

– With regard to the model (11.49), a hypothesis can also be made regarding a negative
impact of distance on imports. Since evidence for —3 < 0 is obtained by statistically
rejecting —3 Ø 0, the pair of hypotheses is

H0 : —3 Ø 0 versus H1 : —3 < 0.

– Choose a significance level of – = 0.05 and calculate the (approximate) critical
value. Note that only the left critical value is required, as the parameter range of
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the alternative hypothesis is to the left of the parameter range of the null hypothesis
and thus the critical range is also to the left of the non-rejection range:

R code (Extract from R program in section A.4)
# download.packages("car", destdir="C:/Program Files/R/R-2.15.1/library")
# install.packages("car")

Listing 11.9: ./R_code/4_�_Beispiel_Handelsstroeme_eng.R

returns -1.68023.

– The t-statistic is contained in the R output:
Coefficients:
Estimate Std. Error t value Pr(>|t|)
log(cepii_dist) -0.88865 0.15614 -5.691 9.57e-07 ***

or in this case results as follows:

R-Code (Extract from R program in section A.4)
(F_stat <- linearHypothesis(mod_4_kq,c("log(wdi_gdpusdcr_o)=1")))

Listing 11.10: ./R_code/4_�_Beispiel_Handelsstroeme_eng.R

t—3 = ≠5.691.

– Decision: Because of
t—3 = ≠5.691 < ≠1.68023 = c,

rejection of the null hypothesis

– p-value:

R code (Extract from R program in section A.4)
# Critical values

alpha <-0.05

Listing 11.11: ./R_code/4_�_Beispiel_Handelsstroeme_eng.R

results in 4.783876e-07. The distance therefore has a negative impact even at the 1%
significance level.

– Interpretation: If the distance increases by 1%, then ceteris paribus the expected
imports to Germany fall by approx. 0.9%.

• F-test: testing joint hypotheses:

– Question: In the model (11.49), the parameters of the variables openness and area
are not statistically significant for the chosen significance level of 5%. However, is
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it possible that both parameters are statistically jointly significant? The pair of
hypotheses is:

H0 : —4 = 0 and —5 = 0 versus
H1 : —4 ”= 0 and/or —5 ”= 0.

– Choice of the significance level: – = 0.05 and the (approximate) critical values.
The critical range lies to the right of the critical value.

Using the F -statistic, determining the (approximate) critical value based on the
F2,44-distribution gives 3.209278 with

R-Code (Extract from R program in section A.4)

# p-value

Listing 11.12: ./R_code/4_�_Beispiel_Handelsstroeme_eng.R

Using the ‰2-statistic, determining the (approximate) critical value based on the
‰2(2)-distribution gives 5.991465 with

R code (Extract from R program in section A.4)
(qf(1-alpha,2,mod_4_kq$df))

Listing 11.13: ./R_code/4_�_Beispiel_Handelsstroeme_eng.R

– Calculating the F -statistic and the p-value is most easily done with the R command
linearHypothesis (requires R package car):

R code (Extract from R program in section A.4)

#### F-test, correlation matrix and confidence ellipses

Listing 11.14: ./R_code/4_�_Beispiel_Handelsstroeme_eng.R

and returns
Linear hypothesis test

Hypothesis:
ebrd_tfes_o = 0
log(cepii_area_o) = 0

Model 1: restricted model
Model 2: log(trade_0_d_o) ~ log(wdi_gdpusdcr_o) + log(cepii_dist) + ebrd_tfes

_o +
log(cepii_area_o)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 46 39.645
2 44 32.018 2 7.6272 5.2408 0.009088 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Calculating the ‰2-statistic and the p-value is most easily done with the R
command linearHypothesis (requires R package car):

R code (Extract from R program in section A.4)
(F2_stat <- linearHypothesis(mod_4_kq,c("ebrd_tfes_o=0","log(cepii_area_o)=0"),

test=c("F")))

Listing 11.15: ./R_code/4_�_Beispiel_Handelsstroeme_eng.R

and returns
Linear hypothesis test

Hypothesis:
ebrd_tfes_o = 0
log(cepii_area_o) = 0

Model 1: restricted model
Model 2: log(trade_0_d_o) ~ log(wdi_gdpusdcr_o) + log(cepii_dist) + ebrd_tfes

_o +
log(cepii_area_o)

Res.Df RSS Df Sum of Sq Chisq Pr(>Chisq)
1 46 39.645
2 44 32.018 2 7.6272 10.482 0.005296 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

In both cases, the respective test statistic is in the critical range, so that the null
hypothesis is rejected at the 5% significance level. Based on both p-values, it can be
seen that the null hypothesis is also rejected at the 1% significance level.

– Interpretation: At least one of the two variables openness or logarithmised area has
an e�ect on exports to Germany. One possible reason for the di�erent test results of
the individual tests and the joint tests is the correlation of 0.42 between the parameter
estimators, see below.

• Correlation matrix of the parameter estimates

R code (Extract from R program in section A.4)

# chi^2-statistic
(Chisq_stat <- linearHypothesis(mod_4_kq,c("ebrd_tfes_o=0","log(cepii_area_o)=0"),

test=c("Chisq")))

Listing 11.16: ./R_code/4_�_Beispiel_Handelsstroeme_eng.R

provides

(Intercept) log(wdi_gdpusdcr_o) log(cepii_dist) ebrd_tfes_o log(cepii_area_o)
(Intercept) 1.00000000 -0.6077120 -0.71380469 -0.26879925

0.08289662
log(wdi_gdpusdcr_o) -0.60771198 1.0000000 0.30644626 -0.41648145

-0.62198317
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log(cepii_dist) -0.71380469 0.3064463 1.00000000 0.09807673
-0.29518939

ebrd_tfes_o -0.26879925 -0.4164814 0.09807673 1.00000000
0.42127548

log(cepii_area_o) 0.08289662 -0.6219832 -0.29518939 0.42127548
1.00000000

• Confidence ellipse for —4 and —5:

– Choose confidence level, here 95%.

– Choose two parameters, here —4 and —5

– Use R command confidenceEllipse() (requires R package car):

R code (Extract from R program in section A.4)
# Covariance matrix

(cov_par <- vcov(mod_4_kq))
# Correlation matrix

(corr_par <- cov2cor(cov_par))

#### Confidence ellipsoids

# Confidence ellipse
if (save.pdf) pdf("plot_conf_ellipse.pdf", 6, 6)
confidenceEllipse(mod_4_kq, which.coef = c(4, 5), levels = 0.95,

Listing 11.17: ./R_code/4_�_Beispiel_Handelsstroeme_eng.R

provides
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12. Univariate time series models

This chapter mainly deals with models for univariate time series. Time series are samples in
which the observations are available over time. A time series is univariate if there is exactly
one variable over time.

Example: The ifo Business Climate: Figure 12.1 shows the time series of the
monthly indices of ifo business outlook, ifo business situation and ifo business
climate for the period January 1991 to January 2023.
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Figure 12.1.: The ifo business outlook, the ifo business situation and the ifo business climate for trade and
industry (January 1991 to January 2023) (R program, see section A.9, page 351 )

Time series are realisations of DGPs, which are then referred to as stochastic processes. The
latter are considered in more detail below. Models for univariate time series are sets that
contain stochastic processes.

https://www.ifo.de/fakten/2023-01-25/ifo-geschaeftsklimaindex-gestiegen-januar-2023
https://www.ifo.de/fakten/2023-01-25/ifo-geschaeftsklimaindex-gestiegen-januar-2023


12.1. Stochastic processes

Stochastic process

A stochastic process {yt}tœT is a sequence of random variables

{yt|t œ T} © {yt(Ê)|t œ T, Ê œ �} © {y(t, Ê)|t œ T, Ê œ �} : � ◊ T æ RT, (12.1)

which are defined on a sample space � and a given index set T (Hassler (2007, Section
2.3), Mikosch (1998, Section 1.2)).

Remarks:

• Other terms: random process, random sequence (Davidson 2000, Section 4.1).

• Other common notations are: {yt}tœT or without specifying the index set {yt}.

• If the index t represents time, a stochastic process is also referred to as a time series
process:

– Continuous-time processes: T is an interval in R.

– Discrete-time processes: T is a finite or countably infinite set, typically T = Z or
T = N.

In the case of discrete-time processes, a distinction is made between discrete-time
stochastic processes with

� regular observation frequency:

Examples: monthly observations of the ifo business climate, annual GDP
growth rates, weekly observations of the DAX.

� irregular observation frequency:

Example: Reuter’s ticker data.

• Univariate and multivariate stochastic processes:

– Univariate stochastic process: yt is a scalar random variable

Example: Observations of the ifo Business Climate Index.

– Multivariate stochastic process: yt is a random vector.

Example: yt =

Q

ca
ifo business climatet

ifo business situationt

ifo business outlookt

R

db .

In this chapter, we consider almost exclusively discrete-time univariate stochastic pro-
cesses with a regular observation frequency. Chapter 13 takes a closer look at models for
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multivariate stochastic processes.

• Literature on general existence conditions for stochastic processes is given in Hassler
(2007, Section 2.3, footnote 9).

• Important: A stochastic process is a function of 2 variables:

– For a given time period t0,
yt0 = y(t0, Ê), Ê œ �,

is a random variable. The expected values E[yt] = µt, t œ T, are called ensemble
averages. Figure 12.2 shows di�erent realisations for each time period t.
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Figure 12.2.: Ten di�erent realisations for each time period t of a stochastic process (R program, see section
A.10, 352 )

– For a given elementary event Ê0,

yt = y(t, Ê0), t œ T,

is a function of time.

The function is then called a realisation, a trajectory or a path of the stochastic
process {yt}. Figure 12.3 shows di�erent trajectories of a stochastic process. Some
authors refer exclusively to the realisation of a stochastic process as a time series (Hassler
2007, Section 2.3).
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Figure 12.3.: Ten di�erent trajectories of a stochastic process (R program, see section A.10, 352 )

Summary: realisation

• of a random variable: number.

• of a stochastic process: trajectory, path: function of time t or a sequence of real
numbers.

DGPs, joint and conditional densities for stochastic processes

• Univariate stochastic processes

The DGP of a univariate stochastic process {yt|t œ T}, T = {1, 2, . . . , T} for T
possible sample observations (y1, y2, . . . , yT ) is fully determined by the joint density
fY1,Y2,...,YT

(y1, y2, . . . , yT ), which in turn can be represented as a product of conditional
densities (cf. for multivariate stochastic processes (5.2) in section 5.1):

fY1,Y2,...,Yn
(y1, y2, . . . , yn) =

TŸ

t=1
fYt|Yt≠1,...,Y1(yt|yt≠1, . . . , y1). (12.2)
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• Multivariate stochastic processes

(Cf. (5.2) in section 5.1 ):

fY1,Y2,...,YT
(y1, y2, . . . , yT ) =

TŸ

t=1
fYt|Yt≠1,...,Y1(yt|yt≠1, . . . , y1) (5.2)

Fully and partially specified time series models

• If the conditional densities fYt|Yt≠1,...,Y1(yt|yt≠1, . . . , y1) or fYt|Yt≠1,...,Y1(yt|yt≠1, . . . , y1),
t = 1, . . . , T , are known, the DGP of the stochastic process is known.

• Fully specified models

Time series models in which the conditional densities are modelled are fully specified.

• Partially specified models

Often one is only interested in individual characteristics of the conditional densities,
typically the conditional expected value or the conditional variance. In this case, it is
generally su�cient to use models with partially specified stochastic processes:

– in the univariate case E[yt|yt≠1, . . . , y1]:

� LLinear stochastic processes ≠æ section 12.2

� Moving average processes ≠æ section 12.2

� Autoregressive processes ≠æ section 12.3

� Autoregressive integrated moving average processes ≠æ section 12.3

� Nonlinear autoregressive processes ≠æ Examples in Advanced Econometrics

� ...

– in the multivariate case E[yt|yt≠1, . . . , y1]:

� Vector autoregressive processes ≠æ Quantitative Economic Research II

� Vector error correction processes ≠æ Quantitative Economic Research II

� ...

– in the univariate case V ar(yt|yt≠1, . . . , y1):

� Autoregressive Conditional Heteroskedastic Processes (ARCH processes) ≠æ
Applied Financial Econometrics
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� Generalized Autoregressive Conditional Heteroskedastic Processes (GARCH pro-
cesses) ≠æ Applied Financial Econometrics

Motivation of the following definitions:

Can ensemble average µt be estimated?

• If R realisations y(r)
t were available for yt, we could use the estimator of the expected

value
µ̂t = 1

R

Rÿ

r=1
y(r)

t .

Problem: In practice, typically R = 1.

• Central question: Under what conditions can the ensemble average µt be estimated
by the time average

ȳT = 1
T

Tÿ

t=1
yt? (12.3)

Note: here R = 1.

• Response requires measures to quantify the stochastic dependencies between observa-
tions at di�erent points in time as well as concepts that define a constancy of relevant
properties of stochastic processes over time (including the ensemble average µt = µ).
These are introduced below. The answers themselves can be found in section 12.4.1.

Measurement of the temporal stochastic dependencies

The following measures are typically used to measure the dependency structure charac-
terised by the conditional densities (representation for univariate stochastic processes):

• Autocovariance function

• Autocorrelation function

• Partial autocorrelation function

Concepts that define a constancy of relevant properties of stochastic processes
over time
• Mean stationarity

• Weak stationarity

• Strict stationarity
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12.1. Stochastic processes

Autocovariance function
The autocovariance function of a stochastic process {yt|t œ T} is defined for all t, t≠k œ T,
k integer, as

Cov(yt, yt≠k) © E [(yt ≠ E[yt])(yt≠k ≠ E[yt≠k])] = E[ytyt≠k] ≠ E[yt]E[yt≠k]
= E[ytyt≠k] ≠ µtµt≠k.

(12.4)

Note: from E(yt|yt≠k) = E(yt) follows Cov(yt, yt≠k) = 0.

Autocorrelation function
The autocorrelation function of a stochastic process {yt|t œ T} is defined for all t, t≠k œ T,
k integer, as

Corr (yt, yt≠k) © Cov (yt, yt≠k)
Ò

V ar (yt) V ar (yt≠k)
.

Partial autocorrelation function
The partial autocorrelation function specifies the conditional autocorrelation between
yt and yt≠k, whereby the condition is composed of all observations that lie between the
periods t and t ≠ k, i.e. yt≠1, . . . , yt≠k+1,

Corr (yt, yt≠k|yt≠1, . . . , yt≠k+1) .

An example of a partial autocorrelation function is (12.29) in section 12.3.3.

Stationarity concepts

Mean stationary process

{yt} is mean stationary if the following applies

µt = µ for all t œ T. (12.5)

Nothing is assumed about the autocovariances.

Weakly stationary or covariance stationary process

A univariate stochastic process {yt|t œ T} is referred to as (weakly) stationary or
covariance stationary if the following properties are fulfilled with regard to the first
two moments:

• E[yt] = µ for all t œ T,

• Cov(yt, yt≠k) = “k, for all t, t ≠ k œ T,

i. e. the mean value does not depend on the time period t and the autocovariance function
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depends exclusively on lag k, but not on the time period t.

Inferences:

• Weakly stationary processes are homoscedastic, since for k = 0 it holds that V ar(yt) = “0.

• For weakly stationary processes, the following applies to the autocorrelation function
flk © Corr(yt, yt≠k):

flk = “k/“0.

Strict stationarity

The definition is provided here for multivariate stochastic processes: A multivariate
stochastic process {yt} is called strictly stationary, if for any set of time indices
t1 < t2 < · · · < tm the joint probability distribution for (yt1 , yt2 , . . . , ytm

) and the joint
probability distribution for (yt1+k, yt2+k, . . . , ytm+k) are equal for any integer k.

Examples for strictly stationary univariate processes

•

A
yt

yt≠1

B

≥ N

Q

ccccca

A
0
0

B

¸ ˚˙ ˝
µ

,

A
1 0.8

0.8 1

B

¸ ˚˙ ˝
�

R

dddddb

and
A

yt+k

yt+k≠1

B

≥ N(µ, �)

have the same bivariate normal distribution for any t, t ≠ 1, t + k, t + k ≠ 1 œ T.

• ˘ Given the random variable z1 with an arbitrary distribution. Then

zt = z1, t = 2, 3, . . . ,

is a strictly stationary process, where all autocorrelations for k ”= 0 are one
(Hayashi 2000, Example 2.2).
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12.1. Stochastic processes

Stochastic processes without autocorrelations

White Noise
ut ≥ WN(0,‡2) means for all t œ T:

• E[ut] = 0,

• V ar(ut) = E[u2
t
] = ‡2,

• Cov(ut, ut≠k) = 0 für k ”= 0.

The conditions mean that the unconditional mean value of ut is zero for each period and
there is no heteroscedasticity.

Note: No assumption is made about the distribution of ut’s, but only the first two moments
are specified.

Independent white noise

A sequence of IID random variables is called an IID process or independent white
noise:

ut ≥ IID(0, ‡2), t œ T.

I. e., it does not help to observe ut≠k in order to specify the probability that a realisation
of ut occurs in a certain interval.

Note: No assumption is made about the distribution of ut’s.

Gaussian White Noise
If you add a normal distribution assumption to the independent white noise, you get
Gaussian white noise:

ut ≥ NID(0, ‡2), t œ T,

resp.
u ≥ N(0, ‡2I).

Note: Independent white noise and Gaussian white noise are both strictly stationary.

R commands
Generating Gaussian white noise with rnorm().

˘ Examples of white noise that are not independent white noise

• (Hayashi 2000, Example 2.4): Let the random variable w be uniformly dis-
tributed on [0, 2fi] and ut = cos(tw), t = 1, 2, . . .. This means that E[ut|ut≠k] ”=
0, t ≠ k, k > 0, since all ut are a�ected by Ê. There can be no independent
white noise. Nevertheless, E(ut) = 0, V ar(ut) = 1/4, Cov(ut, ut≠k) = 0, k ”= 0,
so that white noise is present.

262



• A simple process with conditional heteroscedasticity, namely an ARCH(1)
process ≠æ Applied Financial Econometrics.

In the following, (partially specified) univariate linear stochastic processes that allow non-zero
autocorrelations are covered.

Only a short introduction is given. Very good, detailed textbooks are Hamilton (1994),
Kirchgässner et al. (2013), Neusser (2009) and the application-orientated description in
Lütkepohl & Kraetzig (2008).

12.2. Linear stochastic processes and moving average processes

Linear process

A stochastic process {yt}tœZ is called linear process if it has the following representation
(Neusser (2006, Definition 2.4),Brockwell & Davis (1991, Section 11.1, p. 404))

yt =
Œÿ

j=≠Œ
Âjut≠j (12.6)

with the parameters Âj œ R, j œ Z, and

ut ≥ WN(0, ‡2), (12.7a)
Œÿ

j=≠Œ
|Âj| < Œ. (12.7b)

Example: yt = Â0ut + Â≠1ut+1 + Âut≠1

Remarks:

• Without specifying the distribution of ut, a linear stochastic process is only partially
specified (cf. white noise).

• Note: For infinite sums of random variables, swapping the expected value and
summation is generally not possible.

A swapping of expected value and infinite sum is only possible if a suitably defined limit
value exists for the infinite sum.

The above condition (12.7b) is su�cient for the infinite sum of random variables qŒ
j=≠Œ Âjut≠j

to converge to a well-defined limit value, which is denoted by yt. The convergence occurs
with probability one (Brockwell & Davis 1991, Proposition 3.3.1, p. 83).

If (12.7b) is valid, the expected value and summation can be swapped. This condition can
be weakened somewhat; see Appendix A.2 in Advanced Econometrics.

• Under all conditions mentioned, the linear process is weakly stationary.
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12.2. Linear stochastic processes and MA processes

• Note that in this general definition yt may also be a�ected by future errors ut≠j, j < 0. If
this is excluded, the result is a moving average process, see (12.8) below.

Lag operator

The lag operator defines an operation on an ordered set (e. g. a discrete stochastic process)
on which it maps each element to the previous element

Lyt © yt≠1

with the following properties:

L0 = 1
L2yt = L(Lyt) = Lyt≠1 = yt≠2

L≠1 = yt+1

Lc = c

LmLnyt = yt≠m≠n.

Lag polynomial, filter

The lag polynomial is a linear combination of di�erent powers of lag operators with integer
exponents

�(L) = . . . + Â≠2L
≠2 + Â≠1L

≠1 + Â0 + Â1L + Â2L
2 + . . .

and is called a linear filter (Neusser 2006, Definition 2.4).

Moving Average process of order Œ (MA(Œ) process)

A moving average process {yt}tœZ of order Œ is a linear process with Âj = 0 for all
negative j and qŒ

j=0 |Âj| < Œ

yt =
Œÿ

j=0
Âjut≠j, Â0 = 1,

= (1 + Â1L + Â2L
2 + · · · )ut = �(L)ut.

(12.8)

ut is often referred to as shock, innovation or error.
The term �(L) © (1 + Â1L + Â2L2 + · · · ) is called MA(Œ) polynomial.

Remarks: In a MA(Œ) process, the future has no impact on the present.

Properties

• Mean value: E[yt] = E[qŒ
j=0 Âjut≠j] = qŒ

j=0 ÂjE[ut≠j] = 0. It is possible to swap the
expected value and infinite sum, since qŒ

j=0 |Âj| < Œ, so that (12.7b) holds.
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• (Auto)covariance function::

Cov(yt, yt≠k) = E[ytyt≠k]

= E

S

U

Q

a
Œÿ

j=0
Âjut≠j

R

b
A Œÿ

l=0
Âlut≠k≠l

BT

V

=
Œÿ

j=0

Œÿ

l=0
ÂjÂlE[ut≠jut≠k≠l]

=
Œÿ

j=0

Œÿ

l=0
ÂjÂl

Y
]

[
‡2 if t ≠ j = t ≠ k ≠ l

0 otherwise
with j = k + l

= ‡2
Œÿ

l=0
Âk+lÂl = “k. (12.9)

• Variance

“0 = V ar(yt) = ‡2
Œÿ

j=0
Â2

j
< Œ. (12.10)

• ˘ Technical remark on the derivation of (12.9) and (12.10): It can be shown that under
(12.7b) the limit value

1qŒ
j=0 Âjut≠j

2
(qŒ

l=0 Âlut≠k≠l) is well-defined as ytyt≠k, so that the
swapping of expected value and summation is possible. Note that from qŒ

j=0 |Âj| < Œ
follows: qŒ

j=0 Â2 < Œ. The latter condition is a necessary condition for the existence of
the variance in (12.10). It is referred to as quadratic summability.

Special cases for the practice:

MA(q) processes

yt =
qÿ

l=0
Âjut≠j (12.11)

Properties as for MA(Œ) processes except:

“k = 0, |k| > q. (12.12)

R commands
• Generating MA(q) processes: using the command filter with the specification

sides=1,method="convolution".

• Calculating the theoretical autocorrelation function: with the command ARMAacf

Example: Generating a MA(2) process and theoretical autocorrelation
function
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12.3. AR processes

• DGP: yt = ut + Â1ut≠1 + 0.6ut≠2, ut ≥ NID(0, 4).

• Sample size (or length): n = 1000 R program, see section A.11, page 353
provides figure 12.4 and autocorrelations fl0 = 1, fl1 = 0.64, fl2 = 0.3 und flk = 0
für k = 3, . . ..

Time

y

0 20 40 60 80 100

−6
−4

−2
0

2
4

6

Figure 12.4.: A realisation for n = 100 of a MA(2) process with Â1 = 0.8 and Â2 = 0.6 and ‡2 = 4 (R
program, see section A.11, page 353)

Problem with MA(q) processes: They cannot be estimated with OLS, but require
maximum likelihood estimation methods, see Advanced econometrics. In contrast, the
following autoregressive processes can be estimated with OLS.

12.3. Autoregressive processes

Autoregressive process of order p (AR(p) process)

A stochastic process {yt} is called autoregressive process of order p (AR(p) process)
if it fulfils the following stochastic di�erence equation

yt = ‹ + –1yt≠1 + · · · –pyt≠p + ut, t œ T, (12.13)
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or

(1 ≠ –1L ≠ · · · ≠ –pLp)yt = ‹ + ut,

–(L)yt = ‹ + ut

and {ut} is white noise. The term –(L) © (1 ≠ –1L ≠ · · · ≠ –pLp) is called an AR(p)
polynomial.

Conditional expected value of AR(p) processes

The conditional expected value E[yt|yt≠1, . . . , y1] can be easily calculated for AR(p)
processes:

E[yt|yt≠1, . . . , y1] = ‹ + –1yt≠1 + · · · –pyt≠p. (12.14)

This means that

E[yt|yt≠1, . . . , y1] = E[yt|yt≠1, . . . , yt≠p]. (12.15)

R commands
Generate AR(p) processes: using the command filter with the specification method="recursive".

The derivation of the properties of AR(p) processes is more complex than for MA processes
and is therefore omitted. However, the essential properties can be easily analysed using AR(1)
processes.

12.3.1. AR(1) processes

Stochastic properties of an AR(1) process

yt = ‹ + –1yt≠1 + ut, ut ≥ WN(0, ‡2), t œ T, (12.16)

• Solution: k times substitution returns:

yt = ‹ + ‹–1 + –1 (–1yt≠2 + ut≠1) + ut = · · ·

= ‹
j≠1ÿ

k=0
–k

1 + –j

1yt≠j +
j≠1ÿ

k=0
–k

1ut≠k.

For j = t

yt = ‹
t≠1ÿ

k=0
–k

1 + –t

1y0 +
t≠1ÿ

k=0
–k

1ut≠k. (12.17)
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12.3. AR processes

• Stability properties

For (12.17), the following applies to arbitrary –1 and ‹ = 0, T = N, initial value y0 and
j = t:

– AR process explosive, if |–1| > 1.

– Random walk with/without drift, if –1 = 1:

� Random walk with drift, if –1 = 1, ‹ ”= 0:

yt = ‹ t + y0 +
t≠1ÿ

j=0
ut≠j. (12.18)

� Random walk without drift, if –1 = 1, ‹ = 0:

yt = y0 +
t≠1ÿ

j=0
ut≠j. (12.19)

Example: Figure 12.3 shows di�erent realisations of a random walk.

– AR process stable, if |–1| < 1.

Stationary (and stable) AR(1) process: If t œ Z and j æ Œ (process has been running
indefinitely), the following applies for |–1| < 1

yt = ‹/(1 ≠ –1) +
Œÿ

j=0
–j

1ut≠j. (12.20)

• Unconditional expected value µt © E[yt] for period t:

µt =

Y
__]

__[

‹(1 + –1 + . . . + –t≠1
1 ) + –t

1E[y0] if t = 1, 2, . . . — dependent on t,
‹/(1 ≠ –1) if |–1| < 1 and t œ Z — independent of t,

t‹ + E[y0] if –1 = 1 and t = 1, 2, . . . — dependent on t.

For a given µt, the mean-adjusted autoregressive process is obtained

yt ≠ µt = –1(yt≠1 ≠ µt≠1) + ut.

• Unconditional variance:

V ar(yt) = –2
1V ar(yt≠1) + ‡2

=

Y
__]

__[

‡2 q
t≠1
j=0 –2j

1 if V ar(y0) = 0 and t = 1, 2, . . . — dependent on t,

‡2/(1 ≠ –2
1) if |–1| < 1 and t œ Z — independent of t,

‡2t if –1 = 1, V ar(y0) = 0 and t = 1, 2, . . . — dependent on t.
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• Autocovariance function Cov(yt, ys) © E[(yt ≠ µt)(ys ≠ µs)]:

Cov(yt, yt≠k) = –k

1V ar(yt≠k)

=

Y
__]

__[

–k

1‡2 q
t≠1≠k

j=0 –2j

1 if V ar(y0) = 0 and t = 1, 2, . . . — dependent on t,
–k

1‡2/(1 ≠ –2
1) if |–1| < 1 and t œ Z — independent of t,

(t ≠ k)‡2 if –1 = 1, V ar(y0) = 0, t = 1, 2, . . . — dependent on t.

• Weakly stationary AR(1) process If |–1| < 1 and t œ Z, an AR(1) process is weakly
stationary, as the first two moments are independent of t:

E[yt] = µ = ‹/(1 ≠ –1)
V ar(yt) = “0 = ‡2/(1 ≠ –2

1)
Cov(yt, yt≠k = “k = –k

1“0

• Autocorrelation function In the case of a weakly stationary AR(1) process, the following
applies

flk = Corr(yt, yt≠k) = –k

1 (12.21)

• Properties of a (weakly) stationary AR(1) process: If |–1| ”= 0:

– “k ”= 0 for all k œ Z,

– Autocovariances and autocorrelations converge exponentially fast to zero:

“k = –k

1“0,

flk = –k

1

This means that the e�ect of shocks is ’forgotten’ relatively quickly. We therefore also
speak of models with short memory. In extreme contrast to this is the random walk.
Here, there is a perfect memory, as the e�ect of a shock is never forgotten. Random walks
are an example of models with long memory. See remark after equation (12.33).

Example: Plot of the autocorrelation function (12.21) of an AR(1)
process for –1 = 0.8 and k = 1, . . . , 20
ar1_acf <- ARMAacf(ar=0.8,lag.max=20)
plot(ar1_acf,ylab="Autocorrelations",xlab="Lag",cex=0.8,xlim=c(0,20))

Example: Plot of a realisation of an AR(1) process

Parameters of the DGP: ‹ = 1, –1 = 0.8, ‡2 = 4 with n = 500. Figure 12.6 shows
a realisation generated with R program, see section A.12, page 353.

• (Asymptotic) stationarity:

269



12.3. AR processes
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Figure 12.5.: Autocorrelation function of an AR(1) process with –1 = 0.8
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Figure 12.6.: Realisation of an AR(1) process with ‹ = 1, –1 = 0.8, ‡2 = 4, y0 = 0 and n = 500 ( R program
see section A.12, page 353 )

– If |–1| < 1, the following applies

lim
tæŒ

E(yt) = µ,

lim
tæŒ

Cov(yt, yt≠k) = “k,
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and the AR(1) process is asymptotically stationary.

– Every stationary process is asymptotically stationary.

– If a process is not asymptotically stationary, it is non-stationary.

– What conditions are required for strict stationarity?

• Invertible AR(1) process: If Âj = –j is defined, then the representation (12.20) with
Â0 = 1 and Âj = 0, j < 0, can also be written as MA(Œ process) (12.8)

yt = µ +
Œÿ

j=0
Âjut≠j, t œ Z. (12.22)

The AR(1) process is then called invertible.

• The AR(1) model is partially specified. In order to be able to generate realisations using a
Monte Carlo (MC) study, additional assumptions must be made, e. g.:

– an initial value y0 = 0,

– a parameter value – = 0.9 and

– a distribution for the errors ut ≥ NID(0, 2). See section 2.9.1 for definition of NID.

The DGP is now known and the following MC study can be carried out to check the bias
of the OLS estimator.

12.3.2. Complex numbers

To motivate the need to study complex numbers, we examine the stability properties of an
AR(2) process.

Stability properties of an AR(2) process

• Representation as a combination of two AR(1) processes

(1 ≠ ⁄1L)wt = ut,

(1 ≠ ⁄2L)yt = wt.

Prerequisite for linking:

– {wt} weakly stationary: |⁄1| < 1,

– {ut} White noise.

Perform:

1. Invert AR(1) process {wt}:
wt = 1

1 ≠ ⁄1L
ut
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12.3. AR processes

2. and substitute wt into the yt equation:

(1 ≠ ⁄2L)yt = ut

(1 ≠ ⁄1L)
(1 ≠ ⁄2L)(1 ≠ ⁄1L)yt = ut

((1 ≠⁄1L ≠ ⁄2L¸ ˚˙ ˝
≠–1L

+ ⁄1⁄2L
2

¸ ˚˙ ˝
≠–2L2

)yt = ut

yt ≠ –1yt≠1 ≠ –2yt≠2 = ut

(1 ≠ –1L ≠ –2L
2)yt = ut

with –1 = ⁄1 + ⁄2, –2 = ≠⁄1⁄2.

Result: AR(2) process stationary if |⁄1|, |⁄2| < 1.

Such a decomposition exists for every stationary AR(p) process, but requires
knowledge of complex numbers.

Literature on complex numbers: Neusser (2009, Appendix A), Hamilton (1994, Appendix A.2,
S. 708-710)

• Motivation: x2 + 1 = 0 ≈∆ x2 = ≠1 ≈∆ x = ±
Ô

≠1 has in R no solution.

• Idea: Extend R with an imaginary unit ("‘a second dimension"’) i ©
Ô

≠1 to be able to
form roots of negative real numbers, i. e. define the

set of complex numbers C © R[i] © {z © a + ib | a, b œ R}

as the sum of a real and imaginary number.
Then for any a œ R+ :

Ô
≠a =

Ô
≠1 · a =

Ô
≠1 ·

Ô
a = i

Ô
a œ C.

• Important for this course: What is the modulus of a complex number z œ C: ||z||C?

Conjugate and modulus of a complex number z œ C:

• Complex conjugate of z: z̄ © a ≠ ib

• “length”, modulus, magnitude or absolute value of z : ||z||C © r ©
Ô

zz̄ =
Ô

a2 + b2

This is often notated as ||z||C, ||z||, or |z| - note the di�erence to other norms

||z|| © |z| ©

Y
______]

______[

|z|R ©

Y
]

[
z z Ø 0
≠z z < 0

if z œ R

|z|Rn ©
Ò

z2
1 + . . . + z2

n
if z = (z1, . . . , zn)t œ Rn

|z|C ©
Ô

zz̄ =
Ô

a2 + b2 if z = a + ib œ C

Representation of complex numbers z œ C:

• In Cartesian coordinates: z = a¸˚˙˝
real

+i b¸˚˙˝
complex component

= Re(z) + i Im(z)
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• In polar coordinates: z = r¸˚˙˝
length

· ei◊

¸˚˙˝
direction

= r(cos ◊ + i sin ◊)

Note: ||ei◊||C =
Ô

ei◊ · e≠i◊ = 1

The following figure is based on Neusser (2009, Figure A.1, S. 260):

●
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●

z=a+ib=reiθ

r

ib

a

●

z=a−ib=re−iθ
−ib

θ

a2 + b2 = 1

−1

−i

i

1

Calculation rules
• Addition: (a + ib) + (c + id) = (a + c) + i(b + d)

• Subtraction: (a + ib) ≠ (c + id) = (a ≠ c) + i(b ≠ d)

• Multiplication:

(a + ib)(c + id) = (ac ≠ bd) + i(ad + bc)

• Division:

a + ib

c + id
= (ac + bd) + i(bc ≠ ad)

c2 + d2
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Stability condition for AR(p) processes

An AR(p) process with AR polynomial, z œ C,

–(z) = (1 ≠ –1z ≠ · · · ≠ –pzp)
= (1 ≠ ⁄1z) · · · (1 ≠ ⁄pz) (12.24)

with

• eigenvalues ⁄1, . . . , ⁄p or

• roots ⁄≠1
1 , . . . , ⁄≠1

p

is called stable,

• if all eigenvalues are less than one in absolute value

|⁄i| < 1, i = 1, 2, . . . , p, (12.25)

i. e. lie within the unit circle or

• if all roots/zeros zi of the polynomial –(z), i.e. the characteristic equation of the
AR(p) polynomial

(1 ≠ –1z ≠ · · · ≠ –pzp) = 0

lie outside the unit circle, i. e.

|zi| > 1, i = 1, 2, . . . , p, (12.26)

applies.

R commands
Calculating the roots of an AR(p) polynomial: with polyroot(). Their absolute
values can be determined with abs().

Example: AR(2) process: The absolute values of the roots of the AR(2)
polynomial

–(L) = 1 ≠ 0.1L ≠ 0.9L2

are z = 1 and z = 1.111.... The polynomial is therefore not stable.
abs(polyroot(c(1,-0.1,-0.9)))

Note the following property of the AR polynomial: –(1) = 1 ≠ –1 · 1 ≠ · · · ≠ –p · 1p =
1 ≠ –1 ≠ · · · ≠ –p.

Moments of a (weakly) stationary AR(p) process
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12.3. AR processes

• Mean value/expected value:

E[yt] = µ = ‹/–(1) = µ/(1 ≠ –1 ≠ –2 ≠ · · · ≠ –p) for all t. (12.27)

• Variance and autocovariance function:

The variance and the autocovariances of a weakly stationary AR(p) process are de-
termined by the following Yule-Walker equations (cf. Hamilton (1994, p. 59, Eq.
(3.4.36)))

“k =
I

–1“1 + –2“2 + · · · + –p“p + ‡2 für k = 0
–1“k≠1 + –2“k≠2 + · · · + –p“k≠p für k = 1, 2, . . .

(12.28)

It can be shown that the autocovariances of a stationary AR(p) process converge
exponentially fast towards zero (Hamilton (1994, p. 59), Kirchgässner & Wolters (2008,
Example 2.4)). See section 12.3.1 for the case of AR(1) processes.

• Partial autocorrelation function:

For a weakly stationary AR(p) process, the following applies,

ak = Corr(yt, yt≠k|yt≠1, . . . , yt≠k+1). (12.29)

I. e., all partial autocorrelations for k > p are zero, since ak = –k = 0 for k > p.

Invertibility of a stationary AR(p) process

A stationary AR(p) process can be represented as an MA(Œ) process (12.8):

yt ≠ µ = Â(L)ut (12.30)
yt ≠ µ = ut + Â1ut≠1 + Â2ut≠2 + . . . + Âiut≠i + . . . ,

where the coe�cients of the lag polynomial are determined by the following equation:

1
–(L) = Â(L) (12.31)

–(L)Â(L) = 1. (12.32)

The parameters of Â(L) can be determined using method of equating the coe�cients
(Kirchgässner & Wolters 2008, Section 2.1.2)):

„j =
jÿ

i=1
„j≠i–i, j = 1, 2, . . . , ‹ = 1, –i = 0 for i > p.
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12.3. AR processes

• Modulus: r = |z| = z · z̄ = (a + ib)(a ≠ ib) = a2 + b2

• cos ◊ = a/r

• sin ◊ = b/r

• De Moivre’s formula:

zn = (rei◊)n

= rnein◊

= rn(cos n◊ + i sin n◊)

Fundamental theorem of algebra

Every polynomial with coe�cients „1, . . . , „p œ R

�(z) = 1 ≠ „1z ≠ „2z
2 ≠ · · · ≠ „pzp (12.23)

of degree p Ø 1 decomposes in the set (precisely: field) of complex numbers C exactly into
p linear factors (thus has p complex zeros, roots ⁄≠1

1 , . . . , ⁄≠1
p

), whereby some roots can
occur several times (see Neusser 2009, S. 261):

�(z) = (1 ≠ ⁄1z)(1 ≠ ⁄2z) · · · (1 ≠ ⁄pz).

These roots can be real or complex and occur in the complex case as root pairs of conjugate
roots. If there are c complex root pairs and r real roots, the following holds: p = 2c + r.
The ⁄1, . . . , ⁄p are called eigenvalues of the polynomial �(z).

Example: The polynomial �(z) = z3 ≠ 2z2 ≠ 23z + 150 has a root {z1 = ≠6}
in R, but decomposes in C into all individual components (linear factors) with the
complex root pair {z2,3 = 4 ± 3i}, so it can be written:

�(z) = (z + 6) · (z2 ≠ 8z + 25)
¸ ˚˙ ˝

factorisation over R

= (z + 6) · (z ≠ 4 ≠ 3i) · (z ≠ 4 + 3i)
¸ ˚˙ ˝

linear factorisation over C

=

Q

ccca1 ≠ ≠1
6¸˚˙˝
⁄1

z

R

dddb · (1 ≠ (0.16 ≠ 0.12i)
¸ ˚˙ ˝

⁄2

z) · (1 ≠ (0.16 + 0.12i)
¸ ˚˙ ˝

⁄2

z)

The fundamental theorem of algebra makes it possible to analyse the stability properties of
AR(p) processes.

12.3.3. AR(p) processes and more

Properties of AR(p) processes:
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R commands
Calculating the MA parameters of an AR(p) process: with ARMAtoMA().

Example: AR(2) process: Realisation, theoretical ACF and PACF as well as
MA parameters of the inverted process

The parameters are: ‹ = 1, –1 = ≠0.5, –2 = ≠0.8, ‡2 = 4 with n = 500.

The figure 12.7 is created with the R program, see section A.13, page 354.
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Figure 12.7.: Realisation, ACF, MA parameters, PACF of an AR(2) process with ‹ = 1, –1 = ≠0.5, –2 =
≠0.8, ‡2 = 4, y0 = 0 and n = 500

Non-stationary processes
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12.3. AR processes
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Figure 12.8.: Estimated autocorrelation function of a realisation of an AR(2) process with ‹ = 1, –1 =
≠0.5, –2 = ≠0.8, ‡2 = 4, y0 = 0 and n = 500

• Define the di�erence operator

�yt © (1 ≠ L)yt = yt ≠ yt≠1

• The stability condition (12.25) is violated, for example, if the AR(p) polynomial –(z) can
be decomposed as follows,

1 ≠ –1z ≠ · · · ≠ –pzp = (1 ≠ z)
1
1 ≠ –ú

1z ≠ · · · ≠ –ú
p≠1z

p≠1
2

= (1 ≠ z)–ú(z) = �–ú(z),

where the AR(p ≠ 1) polynomial –ú(L) fulfils the stability condition (12.26). In this case,
the AR(p) process contains a random walk component. This is also referred to as a
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process that is integrated with order 1, in short

yt ≥ I(1).

After applying the di�erence operator, a stable process of order 0 is obtained

�yt ≥ I(0).

The random walk component is often referred to as stochastic trend, as it often causes
trend-like trajectories, see e. g. figure 12.3.

Example: Figure 12.3 shows di�erent realisations of a random walk.

• General: An AR(p) process {yt} is integrated with order d, in short

yt ≥ I(d),

if the following applies,
–(L) = (1 ≠ L)d–ú(L), (12.33)

where d is an integer and –ú(L) fulfils the stability condition. To stabilise an integrated
process, the d-times application of the di�erence operator (1 ≠ L) is therefore necessary.

• It is possible that the integration parameter d is a real number æ Long memory models.
˘ For a German introduction, see e .g. Tschernig (1994, Chapter 3) and Robinson (2003)
with relevant essays on long memory models.

• Autoregressive processes (and stochastic processes in general) can contain a deterministic
trend or time trend. If such processes are stationary after the time trend has been
removed, they are referred to as trend-stationary.

AR(p) processes are well suited for creating forecasts. These can be calculated as follows:

h-step forecast

yT +h|T © E[yt+h|yt, . . .]
yT +1|T = –1yT + · · · + –pyT ≠p

yT +2|T = –1yT +1|T + · · · + –pyT +1≠p

...
yT +h|T = –1yT +h≠1|T + –pyT +h≠p|T with yT +h≠p|T = yT +h≠p, if h ≠ p Æ 0. (12.34)

AR(p) and moving average processes can be combined as follows:

ARIMA(p, d, q) processes

–(L)(1 ≠ L)dyt = Â(L)ut, ut ≥ WN(0, ‡2) (12.35)
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12.4. Estimation of first and second moments in the case of stationary processes

where the AR polynomial is stable so that yt ≥ I(d) and �dyt ≥ I(0).

ARMA(p, q) processes

ARMA(p, q)process is an ARIMA(p, 0, q) process:

–(L)yt = Â(L)ut, ut ≥ WN(0, ‡2). (12.36)

A discussion of the properties of ARMA and ARIMA processes can be found in Applied
Financial Econometrics or in the textbooks mentioned.

12.3.4. OLS estimator for AR(p) models

An AR(p) model (12.13) can be estimated with the OLS estimator. To determine the estimation
properties, the properties of the regressors yt≠1, . . . , yt≠p must be checked. To simplify the
illustration, this is done for an AR(1) model:

• Check whether regressor xt = yt≠1 is predetermined with respect to ut: Since
ut ≥ IID(0, ‡2) holds for the errors, the following applies (see section 2.7)

E[ut|ut≠1, ut≠2, . . .] = E[ut] = 0.

Because of (12.20), yt≠1 only depends on past ut≠1≠j, j Ø 0. This means that yt≠1 is
determined if the past errors are determined. However, since the expected value of ut is
independent of past errors and therefore independent of the condition on past errors, it is
also independent of the condition yt≠1. Therefore, (9.4)

E[ut|yt≠1] = 0
holds and yt≠1 is predetermined with respect to the errors ut.

• Verifying strict exogeneity: For xt = yt≠1 to be strictly exogenous, Cov(ut, xt+1) =
Cov(ut, yt) = 0 must also apply due to (9.2). This is not the case, since

Cov(ut, yt) = Cov(ut, –yt≠1 + ut) = –Cov(ut, yt≠1) + V ar(ut) = ‡2 > 0.

Because of (2.29c), E[ut|yt] ”= 0 also follows from this. Thus, xt = yt≠1 is not strictly
exogenous and the OLS estimator for – is not unbiased. This generally applies to
models with lagged dependent variables.

Since AR(p) models are a special case of dynamic linear regression models, the estimation
properties are discussed in more detail in section 13.5.

12.4. Estimation of first and second moments in the case of stationary
processes

The ensemble average and variance and autocovariances can also be estimated without
specifying a time series model.
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12.4.1. Estimating the mean

Consistency of the mean estimator

Let {yt} be a weakly stationary process with mean µ and autocovariance function “h.
Then the following applies to the mean value estimator,

ȳT = 1
T

Tÿ

t=1
yt

for T æ Œ:

• If “h

hæŒ≠æ 0, the following applies (as in the IID case):

lim
T æŒ

V ar(ȳT ) = lim
T æŒ

E
Ë
(ȳT ≠ µ)2

È
= 0. (12.37)

• If qŒ
h=≠Œ |“h| < Œ, the following applies:

lim
T æŒ

T V ar(ȳT ) = lim
T æŒ

T E
Ë
(ȳT ≠ µ)2

È
=

Œÿ

h=≠Œ
“h. (12.38)

(Brockwell & Davis (1991, Theorem 7.1.1). See there for a proof.)

The mean value estimator ȳT

• is consistent under the weak condition “h

hæŒ≠æ 0 according to (12.37),

Example: DGP is stationary AR(p) process.

• converges with
Ô

T to the true mean µ according to (12.38) if the autocovariance function
is absolutely summable.

• Cf. IID case: nV ar(ȳ) = ‡ and V ar(ȳ) = ‡/n. In the time series case, all au-
tocovariances must be taken into account when calculating the estimation
variance

V ar(ȳT ) ¥ “0 + 2 qŒ
h=1 “h

T
”= “0

T¸˚˙˝
IIDcase

Asymptotic distribution of the mean value estimator

Theorem (Brockwell & Davis 1991, Theorem 7.1.2)
If {yt} is a stationary linear process (cf. (12.6)) with mean value µ = E(yt) and independent
white noise

yt = µ +
Œÿ

j=≠Œ
Âjut≠j, ut ≥ IID(0, ‡2),
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12.4. Estimation of first and second moments in the case of stationary processes

where qŒ
j=≠Œ |Âj| < Œ and qŒ

j=≠Œ Âj ”= 0 apply, then it holds that
Ô

T (ȳT ≠ µ) d≠æ N(0, v) (12.39)

with

v =
Œÿ

h=≠Œ
“h = ‡2

Q

a
Œÿ

j=≠Œ
Âj

R

b
2

, (12.40)

where “h denotes the autocovariance function of {yt}.

Proof (several pages) see Brockwell & Davis (1991, Section 7.3).

Remarks:

• Application of (12.39) in practice: v is estimated by estimating and summing up only 2p + 1
autocovariances, whereby (12.43) is usually used to estimate “h. One obtains

ȳT ¥ N

Q

aµ,
pÿ

h=≠p

“̂h

R

b , (12.41)

where p is chosen with rules of thumb that fulfil p ≥ cT 1/4.

• ˘ If a linear process can be represented as an ARMA(p, q) process (12.36), the mean value
can be calculated using the BLUE estimator (GLS estimator, see section 14.1)

µ̂T =
1
ÿÕ�≠1

T
ÿ
2≠1

ÿÕ�≠1
T

yT , ÿ =
1
1 1 · · · 1

2Õ
,

whereby the covariance matrix

�T =

Q

cccca

“0 “1 · · · “T ≠1
“1 “0 · · · “T ≠2
... ... . . . ...

“T ≠1 “T ≠2 · · · “0

R

ddddb
(12.42)

can be determined from the parameters –1, . . . , –p, m1, . . . , mq. However, the asymptotic
variance is the same (Brockwell & Davis 1991, S. 220, 236),

lim
T æŒ

TV ar(ȳT ) = lim
T æŒ

TV ar(µ̂).

Exact normal distribution of the mean estimator
If in the above theorem in (12.39) the IID condition is strengthened to Gaussian white
noise, ut ≥ NID(0, ‡2), then the mean estimator is exactly normally distributed,

ȳT ≥ N

Q

aµ,
1
T

ÿ

|h|<T

A

1 ≠ |h|
T

B

“h

R

b .
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Proof: possible via simple regression model with autocorrelated errors Cov(ut, ut≠h) =
“h by choosing the constant (=strictly exogenous) as regressor,

yt = µ · 1 + ut, .

⇤
How can autocovariances be estimated?

A) Estimation of parametric time series models.

Example: AR(p) models, see section 12.3.1.

B) Direct (non-parametric) estimation of the autocovariances, see section 12.4.2

How can convergence or absolute summability of the autocovariances be
checked?
Only easily possible with A): Specifying and estimating parametric linear time series
models.

˘ Optional: An even more general result for estimating the mean is the following ergodic
theorem.

Ergodic stochastic process

A stationary stochastic process is called ergodic if an event that a�ects all random
variables yt, t œ T, has either probability 1 or 0 (Davidson 2000, Section 4.4.3).

Example of a stationary but non-ergodic process {yt} Let ut ≥ WN(0, ‡2)
and for a continuous random variable z: z ≥ (0, V ar(z)).

yt = z + ut, t œ Z
Cov(yt, yt≠j) = V ar(z) =∆ Cov(yt, yt≠j) ”≠æ 0 for j æ Œ

E[yt] = E[ut] + E[z] = E[z] = 0

The process {yt} is weakly stationary, as neither the mean value nor the variance or
the autocovariances depend on the time index. However, the (linear) dependence
between two elements of the stochastic process does not disappear with increasing
time interval j. Therefore, {yt} is not ergodic. If P (z = z0) = 1, z is in fact a
constant. Then {yt} is also ergodic because P (z ”= z0) = 0.

Ergodic Theorem

(Davidson 2000, Theorem 4.4.1)
If {yt} is stationary and ergodic and E[y1] exists, then

ȳT

a.s.≠æ E[y1].

This is also referred to as mean value ergodicity. Cf. section 3.3 on almost certain
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12.4. Estimation of first and second moments in the case of stationary processes

convergence. This means that
ȳT

P≠æ E[y1]

also holds.

In general, the following applies: If a stochastic process is ergodic and stationary, the stationary
ensemble mean can be estimated by the time mean!

12.4.2. Estimating the autocovariance function

• Cov(yt, yt≠h) = E [(yt ≠ µt)(yt≠h ≠ µt≠h)] is an expected value.

• Basic idea of estimation: Estimate expected value by averaging. This only works for time
series if the underlying DGP is weakly stationary. Then

Cov(yT , yT ≠k) = Cov(yT ≠1, yT ≠1≠k) = · · · = Cov(y1+K , y1) = “k

and one suddenly has T ≠ k observations

(yT ≠ ȳT )(yT ≠k ≠ ȳT ), (yT ≠1 ≠ ȳT )(yT ≠k≠1 ≠ ȳT ), . . . , (y1+k ≠ ȳT )(y1 ≠ ȳT )

available over which one can average. Possible estimator of the autocovariance function:

“̂h = 1
T ≠ h

Tÿ

t=h+1
(yt ≠ ȳ)(yt≠h ≠ ȳ). (12.43)

One problem with this estimator is that for h close to T one again only averages over very
few observations, regardless of the sample size.

Alternative estimator:
“̃k = 1

T

Tÿ

t=k+1
(yt ≠ ȳ)(yt≠k ≠ ȳ). (12.44)

• Estimation properties (Brockwell & Davis 1991, Section 7.2)

– biased

– If the autocovariance matrix (12.42) is estimated with (12.44), the resulting estimated
autocovariance matrix

�̃T =

Q

cccca

“̃0 “̃1 · · · “̃T ≠1
“̃1 “̃0 · · · “̃T ≠2
... ... . . . ...

“̃T ≠1 “̃T ≠2 · · · “̃0

R

ddddb
(12.45)

is not negative-definite. However, this does not apply to the estimator “̂h (12.43).

– �̃T is positive definite if “̃0 > 0. See Brockwell & Davis (1991, S. 221) together with
Lütkepohl (1996, p. 151).
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12.4.3. Estimating the autocorrelation function

• The autocorrelation function flk can also be estimated in two ways:

fl̂k = “̂k/“̂0, (12.46)
fl̃k = “̃k/“̃0. (12.47)

– Estimation properties Theorem (Brockwell & Davis 1991, Theorem 7.2.1) If {yt}
is a stationary linear process (12.6) with mean value µ = E(yt) and independent white
noise

yt = µ +
Œÿ

j=≠Œ
Âjut≠j, ut ≥ IID(0, ‡2),

where qŒ
h=≠Œ |“h| < Œ and E(u4

t
) < Œ, then for every h œ N, the following applies,

Ô
T (fl̃

h
≠ fl) d≠æ N(0, W) (12.48)

fl̃Õ
h

=
1
fl̃1 fl̃2 · · · fl̃h

2
(12.49)

flÕ
h

=
1
fl1 fl2 · · · flh

2
(12.50)

and W is a covariance matrix with ij-th element

wij =
Œÿ

k=≠Œ

1
flk+iflk+j + flk≠iflk+j + 2flifljfl

2
k

≠ 2fliflkflk+j ≠ 2fljflkflk+i

2
. (12.51)

– The condition of the existence of fourth moments in the above theorem can be replaced
by (Brockwell & Davis 1991, Theorem 7.2.2)

Œÿ

j=≠Œ
Â2

j
|j| < Œ. (12.52)

– If yt ≥ IID(0, ‡2), then flk = 0 for |k| > 0 and wij = 1, if i = j and zero otherwise. This
gives an asymptotically pivotal distribution for the estimator

Ô
T (fl̃h ≠ 0) d≠æ N(0, I). (12.53)

This results in confidence intervals for the estimated autocorrelations of (independent)
white noise. For – = 0.95 this results in

[≠1.96/
Ô

T , 1.96/
Ô

T ].

• The partial autocorrelation ak can be easily estimated using the OLS estimator for ak in
the autoregressive model

yt = ‹ + a1yt≠1 + . . . + akyt≠k + ut.
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12.4. Estimation of first and second moments in the case of stationary processes

R commands
Estimating the autocovariance function, the autocorrelation function or the
partial autocorrelation function of a time series: with acf().

Example: Estimating the autocorrelation function of a realisation of
Gaussian white noise with ‡2 = 4 and n = 100.
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Figure 12.9.: Estimated autocorrelation function with 95% confidence intervals of a white noise realisation
with ‡2 = 4 and n = 100 (R program, see section A.14, page 355)

In Figure 12.9, no ACF is outside the confidence interval for the lags under
consideration. This indicates the presence of white noise.
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13. Models for multivariate time series

13.1. Multivariate data generating processes

Supplements to and review of section 5.1:

• Let st denote a (m ◊ 1) vector of (economic) random variables that are generated in period
t and can be related simultaneously and over time.

• Notation: As in section 4.1, the vector st can contain more variables than ultimately needed
to be modelled. We will also omit the index for the density functions in the following
sections.

• The collection {st}tœT is a vector-valued or multivariate stochastic process.

• The data generating process, DGP of a m-dimensional multivariate stochastic process
is fully described by the conditional density

ft(st|St≠1)

where St≠1 denotes the information set of all lagged vectors st≠j, j > 0,

St≠1 = {st≠1, st≠2, st≠3, . . .}.

This representation is even more general than the conditional densities that occur in (5.2),
since presample values, s0, s≠1, . . ., are permitted for all conditional densities.

• Of course, one could also use the conditional probability function F instead of the conditional
density f . This must even be used if non-continuous random variables are used.

˘ Formally, St≠1 denotes the (smallest) ‡-algebra, i.e. the smallest set of subsets that
allows to assign probabilities to all possible events based on the considered explanatory
(random) vectors st≠1, st≠2, . . .. See section 2.3 for the definition of a ‡-algebra. Instead of
St≠1 = {st≠1, st≠2, st≠3, . . .}, one should correctly write

St≠1 = ‡(st≠1, st≠2, st≠3, . . .).

• Note that the information set St does not become smaller, since

St≠2 ™ St≠1 ™ St ™ · · · ,

so nothing is forgotten or knowledge is accumulated. The information sets are nested over
time (Davidson 2000, Sections 4.1, 5.3.1 and especially 6.2.1).



13.2. Dynamic econometric models

13.2. Dynamic econometric models

• In the following, we generalise the previous definition of econometric models for random
samples from section 5.2 for time series.

• A dynamic econometric model M is a family of functions M(·) depending on the data
and a p ◊ 1 parameter vector Â whose elements are constant over time. The functions
describe the entire DGP or parts of it, or at least approximate it (Davidson 2000, Section
4.1.1). The set of possible and allowed parameters is the parameter space �

M = {M(st, st≠1, st≠2, . . . , s2, s1, . . . , dt; Â), Â œ �} , � ™ Rp (13.1)

• In (13.1), the vector dt denotes non-stochastic variables, but possibly time-varying variables,
e.g. a constant 1, a time trend t, seasonal dummies, etc.

• Time-dependent parameters are collected via a function Â
t

= h(dt, Â).

Example: AR(1) model (12.16):

Parameter vector Â =

Q

ca
‹
–1
‡2

R

db, parameter space � = R ◊ (≠1, 1) ◊ R+.

Example: Structural vector autoregressive model

The example follows Davidson (2000, Sections 4.5.5 and 4.7.2). Let st =
1
yt zt

2
T

,
where the stochastic dynamics of the variables yt and zt are determined by the
following simultaneous equation system:

yt = “1 ≠ –12zt + —11yt≠1 + —12zt≠1 + u1t (13.2a)
zt = “2 ≠ –21yt + —21yt≠1 + —22zt≠1 + u2t, (13.2b)

with

A
u1t

u2t

B

≥ NID

Q

ccccca

A
0
0

B

,

A
‡11 ‡12
‡21 ‡22

B

¸ ˚˙ ˝
�

R

dddddb
. (13.2c)

The model (13.2) is referred to as a structural vector autoregressive model
(SVAR model). In section 13.3, we analyse which regressors on the right-hand
side of (13.2) are exogenous and in which sense. The course Quantitative
Economic Research II deals with estimation methods and further details. The
parameter vector of the model is

Â =
1

–12 –21 —11 —12 —21 —22 “1 “2 ‡11 ‡12 ‡22
2

T

.
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• As in the case of models for random samples (cf. section 5.2), we say that the model M
is fully specified if a model in reduced form MD can be derived from M that contains
conditional densities f(st|St≠1, dt; ◊(Â)) as elements (cf. (5.19))

MD © {f(st|St≠1, dt; ◊), ◊ œ «} .

• If a structural dynamic model M is fully and correctly specified, there is a parameter
vector ◊0 = ◊(Â0) for which the conditional density in MD corresponds to the DGP:

MD ´ MD(st, st≠1, st≠2, . . . , s2, s1, . . . , dt; ◊0) © f(st|St≠1, dt; ◊0)
= ft(st|St≠1)¸ ˚˙ ˝

DGP

. (13.3)

Example: SVAR model – reduced form

The SVAR model (13.2) is a simultaneous equation model. Therefore, the SVAR
model M must be transformed into a model MD in reduced form so that the
set of DGPs contained in the model becomes visible. For this purpose, it is
favourable to write the SVAR model (13.2) in matrix notation

Bst = c + Cst≠1 + ut, ut ≥ NID (0, �) . (13.4)

with

B =
A

1 –12
–21 1

B

, xt =
A

yt

zt

B

, c =
A

“1
“2

B

, C =
A

—11 —12
—21 —22

B

, ut =
A

u1t

u2t.

B

To obtain the reduced form of the SVAR model (13.4), multiply the matrix
equation by the inverse of B (assuming

B≠1 = 1
1 ≠ –12–21

A
1 ≠–12

≠–21 1

B

exists, i. e. –12 ”= –21):

st = B≠1c¸ ˚˙ ˝
a

+ B≠1C¸ ˚˙ ˝
A1

xt≠1 + B≠1ut¸ ˚˙ ˝
Át

,

st = a + A1st≠1 + Át, (13.5a)

Át = B≠1ut = 1
1 ≠ –21–12

A
u1t ≠ –12u2t

u2t ≠ –21u1t

B

(13.5b)

V ar(Át) = � = B≠1�(BÕ)≠1 (13.5c)

with conditional density

st|St≠1 ≥ N
1
B≠1c + B≠1Cxt≠1, �

2
(13.5d)
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13.2. Dynamic econometric models

and with conditional expected value

E (st|St≠1) = B≠1c + B≠1Cxt≠1. (13.5e)

The covariance matrix of Át is

� =
A

Ê11 Ê12
Ê12 Ê22

B

= 1
(1 ≠ –21–12)2

A
‡11 ≠ 2–12‡21 + –2

12‡22 (1 + –12–21)‡21 ≠ –12‡22 ≠ –21‡11
Ê12 ‡22 ≠ 2–21‡21 + –2

21‡11

B

.

(13.5f)

The conditional normal distribution for st follows from the linearity of the
multivariate normal distribution.

The model (13.5) is the reduced form of an SVAR model and is generally referred
to as VAR model.

• The elements of a model in structural form, i. e. the functions M(·), typically contain more
parameters than are specified by the corresponding model in reduced form. Then there is a
function ◊ = ◊(Â) that is not one-to-one, so that Â cannot be uniquely determined from
knowledge of ◊0, the true parameter vector of the reduced form.

Example: SVAR model The parameter vector Â of the SVAR model (13.2)
contains 11 di�erent parameters. The parameter vector of the reduced model
(13.5) only 9: ◊ =

1
a1 a2 A11 A12 A21 A22 Ê11 Ê12 Ê22

2
.

Problem: If this is the case, the information from the data is not su�cient to estimate the
parameters of the structural form. In addition, so-called identification assumptions are
required, which must come from economic theory. See Quantitative Economic Research
II.

Because sample information in principle only enables the estimation of the
parameters of reduced forms.

• The structural and reduced form of a model can be identical.

Simple example: SVAR model and VAR model identical If it is assumed
a priori in (13.2) that –12 = –21 = 0, then the simultaneous relationship between
zt and yt disappears and zt becomes causal for yt. Then the structural and
reduced form correspond.

The case in the previous example is considered more generally in section 13.3.

• Cf. Davidson (2000, Section 4.1).
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13.3. Conditions on exogenous variables in dynamic models

• Even if the correct and complete model MD (13.3) were known, it would be impossible –
given typical sample sizes – to reliably estimate the correct (pú ◊ 1) parameter vector Â0 if
the number of model parameters pú is extremely large. This is the case if the number of
variables under consideration m is very large.

• If you are only interested in the explanation / modelling of selected variables yt, conditional
models can be used as in section 5.2. For time series, however, the definition (5.19) suitable
for random samples must be suitably extended.

• The decomposition of the vector st according to (5.5) into irrelevant variables wt, variables
to be explained yt and explanatory variables zt also applies here.

• Due to the time structure of the data and the DGP, di�erent types of exogeneity can be
distinguished, which were introduced by Engle et al. (1983) and are very helpful:

– weak exogeneity: zt is causal for yt within the same time period in the context of the
model under consideration

– strong exogeneity: zt can be considered as given in multi-step forecasts for yt+h

– super-exogeneity: zt fulfils the condition to be used as an economic policy control
variable.

At the end of the section, these are related to the previous definitions of strictly exogenous
and predetermined variables.

Procedure for defining conditional models for time series

• Partition original vector st and define associated information sets

st =

Q

ca
wt

yt

zt

R

db ,
Wt≠1 = {wt≠1, wt≠2, . . .} = ‡(wt≠1, wt≠2, . . .)
Yt≠1 = {yt≠1, yt≠2, . . .} = ‡(yt≠1, yt≠2, . . .)
Zt≠1 = {zt≠1, zt≠2, . . .} = ‡(zt≠1, zt≠2, . . .)

,

so that wt contains the irrelevant variables, yt the endogenous variables that must
be explained within the model, and zt the variables that do not have to be explained
in the model for the questions at hand, but are relevant for elements of yt, i. e. are
exogenous.

• Combination of information sets. Note the use of the symbol ‚ (Davidson 2000, Section
B.10):

St≠1 = ‡(wt≠1, yt≠1, zt≠1, wt≠2, . . .) © Wt≠1 ‚ Yt≠1 ‚ Zt≠1 ”= Wt≠1 fi Yt≠1 fi Zt≠1.

• Define
f(st|Wt≠1 ‚ Yt≠1 ‚ Zt≠1) © f(st|Wt≠1, Yt≠1, Zt≠1).
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13.3. Conditions on exogenous variables

• Analogous to (5.6) factorisation of the (parametric) density f for ◊ = ◊(Â)

f(st|St≠1, dt, ◊) = f(wt|yt, zt, St≠1, dt, ◊) f(yt|zt, St≠1, dt, ◊) f(zt|St≠1, dt, ◊)
in short: fw,y,z = fw|y,z fy|z fz. (13.6)

Assumptions for weak exogeneity

• There exists a partitioning of the parameter vector Â

Â =
A

Â1
Â2

B

, Â1 œ �1, Â2 œ �2, � = �1 ◊ �2, (13.7)

• and the following applies to the conditional densities:

fw|y,z = f(wt|yt, zt, Wt≠1, Yt≠1, Zt≠1, dt, ◊2, ) (13.8a)
fy|z = f(yt| zt, Yt≠1, Zt≠1, dt, ◊1) (13.8b)

fz = f(zt| Wt≠1, Yt≠1, Zt≠1, dt, ◊2, ) (13.8c)

with ◊1 = ◊1(Â1) and ◊2 = ◊2(Â2).

• In words:

– The functions of the conditional densities for the variables wt, zt that are not to be
explained do not depend on the parameter vector Â1.

– The conditional density function for the variables to be explained yt does not depend on
Â2 and does not depend on the past of wt. The multivariate stochastic process {wt} is
therefore irrelevant for fy|z.

– It is not the case that Â1 = Â1(Â2), so that knowledge of Â2 cannot improve the
estimation properties for Â1. One then denotes Â1 and Â2 as variation free.

• If the assumptions (13.7) and (13.8) apply, it does not matter for the complete modelling
of yt whether fw,y,z or only fy|z is considered.

• If fy|z is considered, the model is said to be conditional on zt (conditional model) and
marginalised with respect to wt.

• A parameterisation of a model is never unique, since any vector-valued function
„ = f(Â), which is bijective, can be used to generate an alternative parameterisation, but
with a di�erent interpretation. Example: „ = exp(—).

• For the existence of the conditional density fy|z in (13.8b) it is therefore important that
any parameter vector Â exists that fulfils (13.7) and (13.8).

• It may be possible to further divide Â2 into parameters for fw|y,z and fz. Since both
conditional densities are irrelevant for the analysis under assumptions (13.7) and (13.8),
this is not necessary.
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Weak exogeneity

• If the goal of the analysis is limited to the explanation of yt (instead of all variables
in st), you only want to analyse the conditional model for fy|z and dispense with the
analysis of the marginal model for fz (cf. section 5.2).

• This is possible precisely when no information is lost for the parameters Â1 of the
conditional model that implies fy|z by not analysing the marginal model that implies
fz. The conditions for this are (13.7) and (13.8). The variables zt of the marginal
model are then denoted as weakly exogenous with respect to Â for the conditional
model, which implies fy|z. The remaining variables yt are referred to as endogenous.

• Restricting the analysis to the conditional model (13.8b) makes sense if the conditional
density to explain yt contains considerably fewer parameters and conditioning variables
than the conditional density for wt.

• Of course, the interest in the explanation of yt by zt and Yt≠1, Zt≠1 based on the
conditional density fy|z can also refer to any parameter vector „1, as long as this
is determined by „1 = g(Â1) (one possibility is ◊1), where g(·) does not have to be
invertible and any parameterisation Â exists for which (13.7) and (13.8) applies.

• Then the variables in yt are referred to as endogenous and the variables in zt as
weakly exogenous for „1. This term was introduced by Engle et al. (1983).

Remarks:

• Splitting the parameter vector Â into Â1 and Â2: ’sequential cut of the parameters’
into ’those that have an impact on the analysis’ and ’the rest’ (Engle et al. 1983).

• The condition (13.7) guarantees that „1 is neither directly nor indirectly dependent on
Â2. This means that it is not possible, for example, that knowing the parameters of the
marginal model for zt would help to determine „1 more precisely.

• Note: The decomposition (13.6) can always be di�erent, e.g. fw,y,z = fw|y,z fz|y fy, but
possibly without ’sequential cut of the parameters’.

• Frequently searched for: Smallest subset of endogenous variables, i.e. if possible yt scalar,
so that (13.7) and (13.8) just still apply.

• Weak exogeneity is a property that

– refers to variable and parameter within a model,

– is not synonymous with causality,

– however, excludes simultaneous relationships (cf. section 4.1) and

– can only be assessed with respect to the ’larger’ model fw,y,z.

The frequent use of the term “zt is exogenous for yt” is therefore imprecise, as the dependence
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13.3. Conditions on exogenous variables

on the model parameters is not clear.

• Cf. Davidson (2000, Section 4.5.3), Hendry (1995, Chapter 5, esp. Sec. 5.3)

• The conditions for weak exogeneity do not rule out the possibility of feedback e�ects from
yt to zt+1 (via Yt in (13.8c)) and thus to future yt. This is precisely why weak exogeneity
is referred to as “weak” . To determine feedback e�ects, the concept of Granger causality
is central, but it is not identical to the concept of causality defined in section 4.1.

For macroeconomic questions, it is generally not possible to conduct controlled random
experiments and natural experiments are rare. ≠æ Use of a weaker concept:

Granger causality

Clive Granger (1969) (Nobel Prize winner 2003, together with Robert Engle).

• A variable zt is Granger-causal for yt if knowledge of zt somehow helps to improve
the prediction for yt+h for at least one h > 0. A su�cient condition is that for at least
one forecast horizon h > 0 the following does not apply

f(yt+h|{zt, zt≠1, . . . , }, Â�t) = f(yt+h|Â�t), (13.9)

where Â�t denotes an information set that can contain all arbitrary variables except
{zt, zt≠1, . . . , }.

• If (13.9) applies to all h > 0, zt is not Granger-causal for yt.

• Granger causality ”≈”∆ Existence of a causal mechanism.

• Granger causality refers exclusively to predictive power.

• Cf. Davidson (2000, Section 4.5.4), Lütkepohl (2004, Section 3.7.1).

Strong exogeneity

• Consider zt =
1
zÕ

1t
zÕ

2t

2Õ
.

• yt is not Granger-causal for z2t if it holds that

f(z1t, z2t|Wt≠1, Yt≠1, Zt≠1) = f(z1t|z2t, Wt≠1, Yt≠1, Zt≠1) f(z2t|Wt≠1, Zt≠1), (13.10)

• z2t strongly exogenous for „1:

– yt not Granger-causal for z2t and

– z2t is weakly exogenous for „1

• If z2t is strongly exogenous (for „1), delayed feedback from yt is also excluded.
This means that z2t
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– can be treated as given in multi-step forecasts.

– can be treated like the non-stochastic variables dt.

• Cf. Davidson (2000, Section 4.5.4) or Hendry (1995, Section 5.8).

Example: SVAR model

Question: For the explanation of yt by equation (13.2a), under which
parameter restrictions is zt weakly exogenous?

The prerequisite for weak exogeneity is that the following ’sequential cut’ of the
parameters

Â1 =
1
–12 “1 —11 —12 ‡11

2
, Â2 =

1
–21 “2 —21 —22 ‡12 ‡21 ‡22

2

(13.11)
exists, whereby the parameter vector Â1 contains the parameters of the structural
equation (13.2a) and their error variance.

To check the condition (13.8), first the i) conditional density is derived, ii) then
the factorisation is performed and iii) finally the condition is checked.

i) has already been done in (13.5).

ii) Factorise the density f : In this case, there is no wt. If one is interested in
the explanation of yt, one needs the factorisation (13.6) fy,z = fy|zfz.

Procedure:

• 1st step: Derivation of the factorisation of fÁ1t,Á2t
= fÁ1t|Á2t

fÁ2t
.

• 2nd step: Replace Á1t and Á2t with equations in reduced form (13.5b).

1st step: Due to the normal distribution assumption and E(Át) = 0 one can write

Á1t = flÁ2t + ÷t, where E[÷t|Á2t] = 0, (13.12)

so that

E[Á1t|Á2t] = flÁ2t. (13.13)

Since the Á’s are the errors of the reduced form (13.5b), Á1t does not contain zt

and Á2t does not contain yt (in contrast to the errors of the structural form (13.2)).
In the 2nd step, Á1t and Á2t can thus be replaced by the respective equations in
Át = xt ≠ A0 ≠ A1xt≠1 and then the conditional density of the conditional model
can be determined and its expected value E[yt|zt, Xt≠1] can be calculated.

The parameter fl in (13.12) must first be determined. This is done by determining
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13.3. Conditions on exogenous variables

the covariance and variance for equation (13.12):

Cov(Á1t, Á2t) = aV ar(Á2t) = Ê12 = flÊ22 =∆ fl = Ê12

Ê22

V ar(Á1t) = Ê11 = fl2Ê22 + V ar(÷t) =∆ V ar(÷t) = Ê11 ≠ Ê2
12

Ê22
.

One obtains

Á1t¸˚˙˝
is without zt

= Ê12

Ê22
Á2t¸˚˙˝

is without yt

+÷t. (13.14)

2nd step: Now Á1t and Á2t in (13.14) are replaced by the respective equations in
Át = xt ≠ A0 ≠ A1xt≠1. After a few transformations (details at the end of the
section), one obtains for yt

yt = Ê12

Ê22
zt + (P“1 ≠ Q“2) + (P—11 ≠ Q—21) yt≠1 + (P—12 ≠ Q—22) zt≠1 + ÷t

(13.15a)

mit

Ê12

Ê22
= (1 + –12–21)‡21 ≠ –12‡22 ≠ –21‡11

‡22 ≠ 2–21‡21 + –2
21‡11

, (13.15b)

P = 1 + –21Ê12/Ê22

1 ≠ –21–12
, Q = –12 + Ê12/Ê22

1 ≠ –21–12
. (13.15c)

The conditional density fyt|zt,xt≠1 of the conditional model for yt given zt

is therefore
yt|zt, xt≠1 ≥ (13.16)

N

A
Ê12

Ê22
zt + (P“1 ≠ Q“2) + (P—11 ≠ Q—21) yt≠1 + (P—12 ≠ Q—22) zt≠1, Ê11 ≠ Ê2

12
Ê22

B

.

The conditional expected value for yt given zt and lags is

E(yt|zt, yt≠1, zt≠1) = Ê12

Ê22
zt + (P“1 ≠ Q“2) + (P—11 ≠ Q—21) yt≠1 + (P—12 ≠ Q—22) zt≠1

(13.17)

Analogously, the expected value for zt can also be calculated.

iii) Checking the conditions (13.8) for weak exogeneity

• The conditional density (13.16) for the conditional model for yt includes all

parameters of the parameter vector Â.
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• The conditions (13.8) for weak exogeneity can only be fulfilled if a sequential
cut (13.11) exists, so that the parameters of the equation for zt do not a�ect
the conditional model for yt. The latter is only possible if

Ê12

Ê22
= ≠–12 =∆ P = 1, Q = 0. (13.18)

• In order for (13.18) to apply,

– the equation –12 = –≠1
21 must be fulfilled for –21 ”= 0 and/or ‡21 ”= 0, which

means that B is not invertible and no reduced form exists, or

– –21 = 0 and ‡12 = 0 must hold.

• The sequential cut (13.11) is therefore only possible if –21 = ‡21 = 0.

– Then zt is weakly exogenous for Â1 or „1 = g(Â1) and

– (13.2) is a recursive model.

• Verification of –21 = ‡21 = 0 not possible with regression. Why is this the case?

Remark: If zt is not weakly exogenous with respect to the parameter
vector Â1, then the OLS estimator does not estimate the parameters of the
structural equation (13.2a), but the parameters of the conditional expected value
(13.17).

Strong exogeneity zt is strongly exogenous for Â1 or „1 = g(Â1) if the
following applies in the reduced form in addition to weak exogeneity (–12 =
‡21 = 0)

B≠1Cxt≠1 = 1
1 ≠ –12–21

A
—11 ≠ –12—21 —12 ≠ –12—22

≠–21—11 + —21 ≠–21—12 + —22

B

xt≠1 =
A

ú ú
0 ú

B

xt≠1,

thus —21 = 0 (then yt≠1 has no impact on zt). The following then applies

E(zt|Xt≠1) = E(zt|zt≠1).

Comparison of exogeneity concepts

• Weak exogeneity versus partial independence

– Partial independence (9.4) of a regressor can only ever be assessed with regard to an
error term.

– Thus, by construction zt is partially independent with respect to ÷t, since from (13.17)
follows: E[÷t|zt, yt≠1, zt≠1] = 0.

– And so, in general, zt is not partially independent with respect to u1t in (13.2a), because
it can be shown that in general E[u1t|zt, yt≠1, zt≠1] ”= 0.
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13.3. Conditions on exogenous variables

– However, if zt is weakly exogenous with respect to Â1, then zt is partially independent
of u1t, since u1t is then identical to ÷t, since –12 = 0.

– Whether a regressor vector is partially independent depends i) always on the underlying
’error-defining’ model, ii) and possibly on the true parameters of the ’larger’ model that
generates the error - as with weak exogeneity.

– The advantage of the concept of weak exogeneity over the concept of predetermination
is that it explicitly makes clear when it is fulfilled by means of parameter restrictions.

• Strong exogeneity versus strict exogeneity

– The regressors Xt are referred to as strictly exogenous if (9.1) is fulfilled.

– According to the comments on weak exogeneity, the following applies: If a variable
is strongly exogenous with regard to a parameter vector, this variable is also strictly
exogenous.

Current status in the literature: An issue of the Journal of Econometrics (2006) is
dedicated to causality and exogeneity, see Bauwens et al. (2006).

˘ Super-exogeneity

• exists if the conditional distribution fy|z depending on „1 is invariant to changes in
the marginal/joint distribution fz.

• Formally: The vector of non-stochastic variables dt can be decomposed into d1t and
d2t, e.g. dt = (1, dt)Õ.

At least one element of zt is super-exogenous for „1 = g(Â1):

– d2t varies over the observation period and is a non-trivial argument of the marginal/joint
density fz

– The conditional density fy|z does not depend on d2t.

– zt is weakly exogenous for „1.

• In order for zt to be super-exogenous for „1, (13.8) with ◊1 = ◊1(Â1) and
◊2 = ◊2(Â2) must be further restricted:

fw|y,z = f(wt|yt, zt, Wt≠1, Yt≠1, Zt≠1, d1t, d2t, ◊2) (13.19a)
fy|z = f(yt| zt, Yt≠1, Zt≠1, d1t, ◊1) (13.19b)

fz = f(zt| Wt≠1, Yt≠1, Zt≠1, d2t, ◊2) (13.19c)

In order for zt to be strongly exogenous for „1 = g(Â1), Yt≠1 must not occur in
(13.19c).

• Super-exogeneity eliminates symmetry between yt and zt, so that causality can be
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determined despite contemporaneous correlation (identification). In the following
example, only one of the two conditional expected values depends on d2t.

• allows identification of relationships,

– which most likely allow structural interpretation,

– which are invariant to (economic) policy and

– fulfil a prerequisite for immunity to the Lucas critique of econometric models.

• In essence, the Lucas critique reads:

’Given that the structure of an econometric model consists of optimal decision
rules for economic agents, and that optimal decision rules vary systematically
with changes in the structure of series relevant to the decision maker, it
follows that any change in policy will systematically alter the structure of
econometric models.’ (Lucas 1976, p. 41)

(Quoted from Hendry (1995, Section 14.14). See there for tests regarding the Lucas
critique).

The Lucas critique also applies, for example, when regression parameters are com-
posed of parameters from behavioural equations and expectations, such as in rational
expectations models, see e.g. Davidson (2000, Section 5.5).

Example: SVAR model

The second structural equation (13.2b) also contains the term ”2d2t, the first
structural equation remains unchanged. Then zt is super-exogenous for yt.

13.4. Dynamic linear regression models

Dynamic linear regression model

• A dynamic linear regression model is a dynamic econometric model (13.1) whose
explanatory variable yt is determined by a linear combination of explanatory variables
and an error term. The explanatory variables can contain lagged endogenous variables
yt≠j, j > 0.

• Dynamic linear regression models generally model the conditional expected value of
the conditional density (13.6)

fy|z = f(yt|zt, St≠1, dt; ◊) (13.20)

of the conditional model, where yt is scalar.

• Notation: In the following we assume that
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13.4. Dynamic linear regression models

– wt has already been classified as not relevant.

– We also only consider one variable to be explained, namely y1t, which is notated as
yt in the following. There are no further endogenous yjt, j Ø 2. The zk explanatory
variables zt are summarised as

Zt =
1
z1t · · · zkz ,t

2
= zT

t

so that a sample observation can be written as
A

yt

ZT

t

B

. (13.21)

The conditional density (13.20) of the conditional model can thus be specified as

fYt|Zt,Zt≠1,...,Z1,Yt≠1,...,Y1(yt|Zt, Zt≠1, . . . , Z1, yt≠1, . . . , y1, dt).

The conditional expected value to be modelled is then

E[yt|Zt, Zt≠1, . . . , Z1, yt≠1, . . . , y1, dt].

If we now assume that the conditional expected value is linear in the parameters, we
obtain the dynamic linear regression model, which is discussed in more detail below.

• The substantively (economically) relevant parameters of dynamic linear regres-
sion models can be consistently estimated with the OLS estimator if certain conditions
are met, see section 13.5. These include the weak exogeneity of the regressors (or their
predetermination). See the extensive discussion in section 13.3. This prerequisite is
already taken into account in the following when defining feasible explanatory variables.

If the condition of weak exogeneity is not met, the conditional expected value of the
reduced form can still be estimated consistently if the latter is linear. Cf. (13.17) in the
example in the previous section. However, the parameters are then not interpretable.
For forecasting purposes, however, this may be irrelevant.

Dynamic linear regression models

• All regressor variables that can be used to specify a dynamic linear regression model for
the endogenous variable yt form the information set �t of all potentially explanatory
variables. The information set of the regressor variables actually used in a model is
denoted by It µ �t. See section 5.2.

• Possible regressor variables in It are:

– deterministic variables, summarised in the row vector dt: Constant, time trend,
seasonal dummies, etc.,
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– lagged dependent variables yt≠j, j > 0,

– predetermined (contemporaneous) variables Zt with respect to the error term ut, i. e.
Zt œ �t, where E[ut|�t] = 0,

– lagged Zt, i. e. Zt≠j, j > 0,

– (almost) every function of the variables mentioned.

• A dynamic linear regression model with information set It =
{dt, Zt, . . . , Zt≠m, yt≠1, . . . , yt≠p} is given by

yt = dt‹ + Zt”0 + Zt≠1”1 + · · · + Zt≠m”m + yt≠1–1 + . . . + yt≠p–p + ut, t œ T. (13.22)

• With

Xt =
1
dt Zt Zt≠1 · · · Zt≠m yt≠1 · · · yt≠p

2
, — =

Q

ccccccccccccccca

‹
”0
”1
...

”m

–1
...

–p

R

dddddddddddddddb

, (13.23)

the dynamic linear regression model (13.22) can be written again in the familiar compact
form

yt = Xt— + ut. (13.24)

Dynamically correctly specified model

• A dynamic linear regression model is dynamically correctly specified if the following
applies for — = —0 and Xt œ It:

E[yt|�t] = E[yt|dt, Zt, Zt≠1, . . . , Zt≠m, yt≠1, . . . , yt≠p] = E[yt|Xt, —0] = Xt—0 (13.25)

where —0 is the true parameter vector.

13.5. OLS estimation of dynamic linear regression models

Since AR(p) models are a special case of dynamic linear regression models, it is su�cient to
examine the estimation properties for the latter.

• Assumptions for asymptotic estimation properties of the OLS estimator of (13.24):
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13.5. OLS estimation of dynamic linear regression models

– (C1) ≈∆ Assumption (B1): The DGP is contained in (13.24) for — = —0.

– (C2): ut|�t ≥ (0, ‡2) ≈∆

Y
_______________________]

_______________________[

(C2a) Regressors predetermined

E(ut|�t) = 0,

(C2b) Conditional homoscedasticity of errors

E(u2
t
|�t) = ‡2 := E(u2

t
),

where ‡2 = ‡2
0 applies to the error variance of the DGP.

– (C3) ≈∆ Assumption (A1)

plim
næŒ

1
n

nÿ

t=1
XT

t
Xt = lim

næŒ

1
n

nÿ

t=1
E(XT

t
Xt) = SXT X < Œ, SXT X invertible.

– (C4a) Strict stationarity of {st} =
1
yt Zt

2
T

,

– (C4b) E|⁄T Xtut|2+” Æ B < Œ, ” > 0, for all fixed ⁄ with ⁄T ⁄ = 1.

• Asymptotic estimation properties of the OLS estimator

– Consistency: Unter den Annahmen (C1), (C2), (C3), the OLS estimator is consistent,
i. e.

plim
næŒ

—̂
n

= —0 (13.26)

– Asymptotic normal distribution: Under assumptions (C1), (C2), (C3) and (C4a)
or (C4b), the OLS estimator is asymptotically normally distributed,

Ô
n

1
—̂

n
≠ —0

2
d≠æ N(0, ‡2

0S≠1
XT X

). (13.27)

– Here without proofs. The (elaborate) proofs can be found in the slides for the MA course
Advanced Dynamic Econometrics or in Davidson (2000).

• Notes on the assumptions:

– The assumption (C2a) assumes that all regressors are predetermined, i. e. (9.4) applies,
and that the model is dynamically correctly specified, i. e.

E[yt|Xt, yt≠1, Xt≠1, yt≠2, Xt≠2, . . .] = E[yt|Xt] (13.28)

Then the errors {ut} are uncorrelated.
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– The assumption (C2a) is weaker than strict exogeneity (B2a), therefore the OLS
estimator in the dynamic linear regression model is generally biased.

– In order for assumption (C3) to apply, for example, in the case of an AR(1) process
(12.16), it must hold that

� |–| < 1 (stability condition) holds and

� E|ut|2+” Æ B < Œ, ” > 0, t = 1, . . . , n, i. e. moments exist for the error distribution
beyond the variance.

For AR(p) processes, the corresponding stability condition must be fulfilled (see e. g. BA
course Time series econometrics or MA courses mentioned below).

If all regressors are weakly stationary, i. e.

� E[Xt] = E[Xs] and

� Cov(Xs, Xt) = Cov(Xs+k, Xt+k) independent of s, t = 1, . . . and k,

then assumption (C3) is also fulfilled (without proof).

– Assumption (C4b) requires that moments beyond the variance exist for the conditional
error distribution. (Example: conditional normal distribution, t-distribution with at
least 4 degrees of freedom)

– The assumptions correspond to the assumptions in Davidson (2000): Cf. to (C2a)
(Davidson 2000, Assumption 7.1.1), to (C2b) (Davidson 2000, Assumption 7.1.2), to
(C3) Davidson (2000, 7.1.3), to (C4b) (Davidson 2000, Eq. (7.1.12)).

Example: Stationary AR(1) process

R code
# =============================== 13_5_KQ_AR1_eng.R ====================================
# Program for generating and OLS estimation of an AR(1) model
# created by : RT, 2011_01_19

graphics.off() # Close all graphic windows

# Set parameters of the model and the Monte Carlo simulation
set.seed(42) # Randomseed
N <- 50 # Sample size

beta <- c(2,0.1) # Parameter vector
sigma <- 2 # Standard deviation of the error
y0 <- 0 # Start value of the AR(1) process

# Generate a realisation of an AR(1) process
u <- rnorm(N,mean=0,sd=sigma) # Draw u
y <- rep(1,N)*y0
for (t in (2:N))
{

y[t] <- beta[1] + y[t-1] * beta[2] + u[t] # Calculate y_t
}

# Plot of the time series
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13.5. OLS estimation of dynamic linear regression models

plot(y,xlab="Time",ylab="y",type="l")

# Scatterplot
plot(y[1:(N-1)],y[2:N])

# Calculate the OLS estimator
ols <- lm(y[2:N]~1+y[1:(N-1)]) # Note x=y_{t-1]. Therefore y_t of t=2,...,N
summary(ols)
# =============================== End ========================================

Listing 13.1: ./R_code/13_5_KQ_AR1_eng.R

• Example: Monte Carlo simulation of the OLS estimation of an AR(1) process
with the following

R code
# ======================== 13_5_MC_KQ_AR1_eng.R ==================================
# Program for Monte Carlo simulation
# to determine the bias of the OLS estimator in the AR(1) model
# created by : RT, 2010_11_25

graphics.off() # Close all graphic windows

# Set parameters of the model and the Monte Carlo simulation

set.seed(42) # Randomseed
N <- 50 # Sample size
R <- 1000 # Number of replications

beta <- c(1,0.9) # Parameter vector
sigma <- 2 # Standard deviation of the error
y0 <- 1 # Start value of the AR(1) process

# Forming a loop
beta_hat_store <- matrix(0,nrow=R,ncol=length(beta))

# Initialise matrix to store the OLS estimates
# for each realisation

for (r in (1:R))
{

# Generate a realisation of an AR(1) process
u <- rnorm(N,mean=0,sd=sigma) # Draw u
y <- rep(1,N)*y0
for (t in (2:N))
{

y[t] <- beta[1] + y[t-1] * beta[2] + u[t] # Calculate y_t
}
# Calculate the OLS estimator
ols <- lm(y[2:N]~y[1:(N-1)]) # Note x=y_{t-1]. Therefore y_t of t=2,...,N

# Store the parameter estimates
beta_hat_store[r,] <- coef(ols)

}

# Calculate the mean values of the parameter estimates

colMeans(beta_hat_store)

# Create histograms
par(mfrow=c(1,2)) # Draw two plots in a graphic window

hist(beta_hat_store[,1],breaks=sqrt(R))
hist(beta_hat_store[,2],breaks=sqrt(R))

# ========================= End ==================================

Listing 13.2: ./R_code/13_5_MC_KQ_AR1_eng.R
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14. Generalized least squares estimator and its applications

• The simple linear model is:

y = X— + u, E(u|X) = 0, V ar(u|X) = ‡2I.

In practice, the assumption of homoscedastic and uncorrelated errors is often violated.

• Generalized linear model with (strictly) exogenous regressors:

y = X— + u, E(u|X) = 0, V ar(u|X) = E(uuT |X) = � (14.1)

where it is assumed that the covariance matrix � is positive definite:

� = V ar(u|X) = E
Ë
(u ≠ E [u|X]) (u ≠ E [u|X])T

È

=

Q

cccca

V ar(u1|X) Cov(u1, u2|X) · · · Cov(u1, un|X)
Cov(u2, u1|X) V ar(u2|X) · · · Cov(u2, un|X)

... ... . . . ...
Cov(un, u1|X) Cov(un, u2|X) · · · V ar(un|X)

R

ddddb
.

(14.2)

Special cases:

– The simple linear model is a special case: � = ‡2I.

– If � is a diagonal matrix with Ê2
t

= V ar(ut|X) ”= Ê2
s

for some s, t, s ”= t,

� =

Q

cccca

Ê2
1 0 · · · 0

0 Ê2
2 · · · 0

... ... . . . ...
0 0 · · · Ê2

n

R

ddddb
, (14.3)

the errors are not correlated, but (conditionally) heteroscedastic.



14.1. Generalized least squares estimator

• (Conditional) heteroscedasticity is present if the error variance and thus the conditional
variance of the dependent variable given the information set �t or parts thereof is not
constant, i.e. it holds that

V ar(ut|�t) = Ê2
t

”= ‡2, (14.4a)
V ar(yt|�t) = E

Ë
(yt ≠ E[yt|�t])2 |�t

È
= E[u2

t
|�t] = Ê2

t
. (14.4b)

– Heteroscedasticity: Ê2
t

is a function of deterministic regressors, e. g. time.

– Conditional heteroscedasticity: Ê2
t

is a function of regressors that are random
variables.

Examples:

– The variance of exports depends on the GDP of the exporting country.

– The variance of consumption expenditure depends on the level of income.

A rather general model for E[u2
t
|�t] is:

V ar(ut|�t) = E[u2
t
|�t] = h(” + Zt“), Zt œ �t. (14.5)

There are three cases:

– The function h(·) is known including all parameter values for ”, “, then use the GLS
estimator (14.7), see section 14.1.

– The function h(·) is parametric, but the parameters ”, “ are unknown, then use the
FGLS estimator (14.17), see section 14.2.1.

– The function h(·) is completely unknown, then use heteroscedasticity-robust standard
errors, see section 14.3.

14.1. Generalized least squares estimator

• Generalized linear least squares estimator (generalized least squares estimator
(GLS estimator)):

—̂GLS =
1
XT �≠1X

2≠1
XT �≠1y.

• Derivation:

– Cholesky decomposition: For every symmetric positive definite matrix A there exists
a decomposition BBT , where B is a unique lower triangular matrix with positive elements
on the diagonal (Gentle (2007, Section 5.9.2), Lütkepohl (1996, Section 6.2.3 (2))).
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– Since � is symmetrically positive definite, there exists a unique lower triangular matrix
�, so that

�≠1 = ��T .

– Multiplying the generalized linear model (14.1) from the left by �T yields

�T y¸ ˚˙ ˝
yú

= �T X¸ ˚˙ ˝
Xú

— + �T u¸ ˚˙ ˝
uú

yú = Xú— + uú, (14.6)

where �T was chosen such that E
Ë
uú (uú)T |X

È
= I (verify!).

– This means that the model with the transformed variables fulfils the assumptions of
the simple linear model for the covariance matrix of the error vector, so that the OLS
estimator can be applied and the GLS estimator follows from this:

—̂GLS =
1
(Xú)T Xú

2≠1
(Xú)T yú (14.7a)

=
1
XT ��T X

2≠1
XT ��T y (14.7b)

=
1
XT �≠1X

2≠1
XT �≠1y. (14.7c)

– The GLS estimator can also be derived directly from the (theoretical) moment conditions

XT �
1
�T y ≠ �T X—

2
= 0

XT �≠1 (y ≠ X—) = 0 (14.8)

or from the minimisation of the SSR of the model (14.6).

• Assumptions for determining the estimation properties

(cf. section 11.1 on OLS assumptions)

– (B1) The model is correct, i. e. the DGP is contained in the model (14.1).

– (B2’) u|X ≥ (0, �).

– (B3) No perfect collinearity in the regressor matrix X.

– (B4’) u|X ≥ N(0, �).

Note that the assumptions (B2’) or (B4’) are weaker than the original assumptions (B2)
or (B4). Conditional on X, heteroscedasticity as well as autocorrelation for time series
data can occur in the errors.

• Estimation properties of the GLS estimator in finite samples:

– Under (B1), (B2a) and (B3) the GLS estimator is unbiased

E
1
—̂GLS

2
= —.

307



14.1. Generalized least squares estimator

– Under (B1), (B2’) and (B3) the GLS estimator has covariance matrix

V ar
1
—̂GLS|X

2
=

1
(Xú)T Xú

2≠1

=
1
XT �≠1X

2≠1
(14.9)

and is BLUE, i. e. e�cient. Proof see below for generalized moment estimator.

• Generalized moment estimator: For a given sample, let the (1 ◊ k) vectors of vari-
ables Wt =

1
Wt1 Wt2 · · · Wtk

2
, t = 1, . . . , n, be summarised in the matrix WT =

1
WT

1 WT

2 · · · WT

n

2
. Under the assumption/property

E(u|X, W) = 0,

a moment estimator is obtained by estimating the theoretical moments E[WT

t
ut] = 0 based

on the resulting moment conditions for a given sample with

WT (y ≠ X—) = 0.

One obtains:
—̃W =

1
WT X

2≠1
WT y.

This results in the covariance matrix

V ar(—̃W|X, W) =
1
WT X

2≠1
WT �W

1
XT W

2≠1
.

GLS is a special moment estimator (cf. (14.8)) with

W = �≠1X.

The di�erence between the precision of a generalized moment estimator and the precision
of the GLS estimator is positive semidefinite.

Since every linear unbiased estimator —̃ = Ay with AX = I, cf. section 9.4, can be
represented as a moment estimator (due to y = X—̃ + ũ follows Aũ = 0), the GLS
estimator is therefore e�cient.

• Calculating GLS estimators

– If n is large, saving and inverting � requires a lot of memory (n = 10000 requires 1600
MB, for example). Therefore better: Apply � beforehand without saving � (if possible).

– Weighted least squares (WLS) estimator
ut heteroscedastic and uncorrelated (i. e. � diagonal). This means that � is diagonal
(14.3) and the approach (14.6) is

yt

Êt

= 1
Êt

Xt— + ut

Êt

with V ar(ut/Êt|X) = 1. Interpretation, calculation and notes:

308



� Observations with large error variance receive less weight.

� How to select the weights? Depending on the data structure, e. g. by a linear
combination of explanatory variables (example: income level) or averages in di�erent
groups.

� Calculate R2 for weighted OLS estimation with model (14.6), since the estimated
residuals are orthogonal to �T X, but not to X.

� For the unweighted estimation, it is best to use (7.33).

• Asymptotic estimation properties of the GLS estimator

—̂GLS =
1
XT �≠1X

2≠1
XT �≠1y = —0 +

1
XT �≠1X

2≠1
XT �≠1u.

The assumptions (A1), (A2) resp. (A3) must be modified accordingly so that an LLN
and a CLT apply analogously:

– (A1’) plim
næŒ

1
n
XT �≠1X = SXT �≠1X, SXT �≠1X has full rank.

– (A2’) A LLN applies for XT �≠1u/n.

– (A3’) X
T

�
≠1

uÔ
n

d≠æ N (0, SXT �≠1X) .

Then it can be shown with the already known procedure that the GLS estimator is

– consistent ((B1), (B3) (A1’), (A2’)) and

– asymptotically normally distributed ((B1), (B3) (A1’), (A3’)):
Ô

n
1
—̂GLS ≠ —0

2
d≠æ N

1
0, S≠1

XT �≠1X

2
.

• Often � or � is unknown and must be estimated. Then the GLS estimator is not applicable
and must be replaced by the following estimator.

• R command: lm( ,weights=), where weights must be passed the weights 1/Ê2
t
.

14.2. Feasible GLS

• If the error covariance matrix � is unknown, it must be modelled.

• Asymptotic properties of FGLS

– In short, the FGLS estimator

—̂F GLS =
1
XT ‚�≠1X

2≠1
XT ‚�≠1y (14.10)

is consistent and asymptotically normally distributed if the error covariance matrix � is
correctly specified and can be consistently estimated.
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14.2. Feasible GLS

– The proof is more complex, but the idea is quite simple. It results from the asymptotic
properties of the GLS estimator. These are retained for the FGLS estimator if the
following applies

plim
næŒ

1
n

XT ‚�≠1X = plim
næŒ

1
n

XT �≠1X, (14.11a)

plim
næŒ

1
n

XT ‚�≠1u = plim
næŒ

1
n

XT �≠1u. (14.11b)

� In general, this requires that the — vector is consistently estimated in the first stage,
so that from the errors consistently estimated by û, e. g. “ in (14.5) and thus � can
be consistently estimated.

� Attention: If � is not diagonal, the OLS estimator for the first stage is generally
inconsistent! In this case, other estimation methods are necessary.

14.2.1. Modelling of heteroscedastic errors

• An often suitable model for modelling V ar(ut|�t) = Ê2
t

is

E[u2
t
|�t] = e”+Zt“ = e”eZt“ . (14.12)

The equation (14.12) specifies the function h(·) in (14.5) as h(·) = exp(·).

If it is specified for a random variable vt that

E[vt|�t] = 0 and V ar(vt|�t) = 1,

u2
t

can be written as
u2

t
= e”+Zt“v2

t
, (14.13)

so that (14.12) applies. In order to estimate ” and “ with a linear regression, (14.13) is
logarithmised:

ln u2
t

= ” + Zt“ + ln v2
t
. (14.14)

Since E[ln v2
t
] ”= ln E[v2

t
] = 0 (Jensen inequality, see section 2.7), the following trick is used:

ln u2
t

= ” + E[ln v2
t
]

¸ ˚˙ ˝
”Õ

+Zt“ +
1
ln v2

t
≠ E[ln v2

t
]
2

¸ ˚˙ ˝
÷t where E[÷t|�t] = 0.

ln u2
t

= ”Õ + Zt“ + ÷t. (14.15)

• 2-stage estimator:

1st step: Estimate the model (14.1) with OLS and save the residuals

û = MXy.

Insert the residuals into (14.15) for OLS estimation of ”Õ and “:

ln û2
t

= ”Õ + Zt“ + errors. (14.16)
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2nd step: Estimate (14.6) approach with Ê̂2
t

= exp(Zt“̂):

yt

Ê̂t

= 1
Ê̂t

Xt— + ut

Ê̂t

. (14.17)

The factor e”̂
Õ can be omitted as it is constant for all observations.

• FGLS or OLS with heteroscedasticity-robust standard errors? The question is
how well � can be estimated. The more imprecise, the more likely it is to use the OLS
estimator with heteroscedasticity-robust variance-covariance matrix, see section 14.3.

• It is possible to iterate the FGLS estimator. This has no impact on the asymptotic
properties, but on the estimation properties in finite samples.

14.2.2. Models with autocorrelated errors

See Davidson & MacKinnon (2004, Sections 7.6-7.9).

14.3. Heteroscedasticity-robust standard errors in OLS estimation

• Derivation of heteroscedasticity-robust standard errors

If heteroscedastic errors are present, then the variance-covariance matrix of the OLS
estimator is given by (9.7):

V ar(—̂|X) = (XT X)≠1XT V ar(u|X) X(XT X)≠1 (9.7)
= (XT X)≠1XT � X(XT X)≠1. (14.18)

This variance-covariance matrix is often referred to as sandwich covariance matrix,
where (XT X)≠1 represents the "‘bread slices"’. The variance-covariance matrix of ine�cient
estimators often have this form.

• An alternative representation of the "‘filling"’ is

XT �X =
nÿ

t=1
Ê2

t
XT

t
Xt.

Since E[u2
t
|X] = Ê2

t
, Ê2

t
can be estimated by the "‘average based on one observation"’ u2

t
.

This is of course not a very good estimator, but for our purpose it does the job. Since ut is
unknown, we take the residual ût.

Accordingly, the covariance matrix (14.18) of the OLS estimator for heteroscedasticity can
be estimated using

‰V ar(—̂|X) = (XÕX)≠1
A

nÿ

t=1
û2

t
XT

t
Xt

B

(XÕX)≠1. (14.19)
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14.3. Heteroscedasticity-robust standard errors

• Remarks:

– The standard errors obtained from (14.19) are called heteroskedasticity-robust stan-
dard errors or White standard errors. The latter term goes back to Halbert White,
an econometrician at the University of California in San Diego.

– For an individual —̂j, the heteroscedasticity-robust standard error can be smaller or larger
than the usual OLS standard error.

– It can be shown that the OLS estimator —̂ no longer has a known finite sampling distribu-
tion if heteroscedasticity-robust standard errors are used. However, it is asymptotically
normally distributed under quite general conditions. The critical values and the
p-values therefore remain approximately valid if (14.19) is used.

– In Davidson & MacKinnon (2004, Section 5.5) it is explained why (14.19) is a consistent
estimator of (14.18).

– The OLS estimator is unbiased and consistent regardless of the choice of standard
errors (White or non-White), since the assumptions (B1), (B2a), (B3) remain una�ected
by heteroskedasticity.

– However, the OLS estimator is (asymptotically) not e�cient in the case of heteroscedas-
tic errors, as it can be shown that the di�erence between the (asymptotic) precision
of the OLS estimator and the (F)GLS estimator is positive semidefinite. Therefore,
if something is known about the functional form of heteroscedasticity and there are
su�cient sample observations, the FGLS estimator should be used.

• Alternative estimators of (14.18) and their names in Davidson & MacKinnon (2004,
Section 5.5) and the R packages car or sandwich.

– "‘HC0"’: White standard errors (14.19).

– "‘HC1"’: Multiplies White standard errors (14.19) by n/(n ≠ k). (Default in EViews.)

– "‘HC2"’: Replaces û2
t

White standard errors (14.19) with û2
t
/(1 ≠ ht), where ht is the tth

diagonal element of PX.

– "‘HC3"’: Replaces û2
t

White standard errors (14.19) with û2
t
/(1 ≠ ht)2, where ht is the

tth diagonal element of PX.

All corrections aim to correct the underestimation of the error variance by using the
residuals instead of the errors, see section 9.5. For a more detailed explanation of the
respective corrections, see Davidson & MacKinnon (2004, Section 5.5).

• R commands for calculating heteroscedasticity-robust variance-covariance matrices:

– Package car: hcmm(model,type="hc1")

– Package sandwich: vcovHC(model,type="HC1")
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• R commands for calculating heteroscedasticity-robust test statistics with package car:

– coeftest(model,vcov=hccm(model,type="hc1")) provides usual regression output
with heteroscedasticity-robust standard errors.

– linearHypothesis(,vcov=hccm(model,type="hc1")) provides F -test with heteroscedasticity-
robust variance-covariance matrix.

14.4. Empirical analysis of trade flows: Part 4

Continuation of the analysis of model (11.49):

ln(Importsi) = —1 + —2 ln(GDPi) + —3 ln(Distancei)
+ —4 Opennessi + —5 ln(Area) + ui.

(11.49)

• Eliminate missing values or not a number (NAN) or not available/not applicable
(NA) (in R): In the data set used, there is a NA for the dependent variable Imports, which
leads to the residual vector having fewer rows than the regressor matrix in the further
course of the R program. It therefore makes sense to eliminate this observation from the
data frame before starting the estimations. If the original data frame is denoted with
daten_all, this can be done with the command

daten <- daten_all[!is.na(daten$trade_0_d_o),]

Only then use the command attach(daten) so that R searches in the correct data frame!

• FGLS estimation

R code (Extract from R program in section A.4)
col = "blue", lwd = 2)

if (save.pdf) dev.off()

################################################################################
# Section 14.4 FGLS and heteroskedasticity-robust OLS estimation
################################################################################

#### FGLS estimation for model 4
mod_4_formula <- log(trade_0_d_o) ~ log(wdi_gdpusdcr_o) + log(cepii_dist) +

ebrd_tfes_o + log(cepii_area_o)

# 1st step
resids <- residuals(mod_4_kq)
fits <- fitted(mod_4_kq)

Listing 14.1: ./R_code/4_�_Beispiel_Handelsstroeme_eng.R

One obtains:
Call:
lm(formula = mod_4_formula, weights = 1/omega)

Weighted Residuals:
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14.4. Empirical analysis of trade flows: Part 4

Min 1Q Median 3Q Max
-4.799 -1.227 0.544 1.174 3.006

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.20213 1.26254 1.744 0.088106 .
log(wdi_gdpusdcr_o) 1.07977 0.05715 18.893 < 2e-16 ***
log(cepii_dist) -0.90934 0.11505 -7.904 5.54e-10 ***
ebrd_tfes_o 0.25397 0.17561 1.446 0.155201
log(cepii_area_o) -0.20138 0.05343 -3.769 0.000485 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.897 on 44 degrees of freedom
Multiple R-squared: 0.9345, Adjusted R-squared: 0.9286
F-statistic: 157.1 on 4 and 44 DF, p-value: < 2.2e-16

• Heteroskedasticity-robust OLS estimator

R code (Extract from R program in section A.4)

# 2nd step
omega <- exp(fitted(lm(mod_formula_ln_u_squared)))
model_gls <- lm(mod_4_formula, weights=1/omega)
(summary(model_gls))

Listing 14.2: ./R_code/4_�_Beispiel_Handelsstroeme_eng.R

provides

t test of coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.427777 1.337400 1.8153 0.076298 .
log(wdi_gdpusdcr_o) 1.025023 0.070679 14.5024 < 2.2e-16 ***
log(cepii_dist) -0.888646 0.120775 -7.3579 3.428e-09 ***
ebrd_tfes_o 0.353154 0.180896 1.9522 0.057290 .
log(cepii_area_o) -0.151031 0.050657 -2.9814 0.004662 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

• Summarising the results in a table: Output table for model (11.49) for di�erent
estimators

Result: Both the parameter estimates themselves and the standard errors do not di�er
fundamentally. Possible cause: There is no heteroscedasticity in the error variances.
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Dependent variable: ln(Imports to Germany)
Independent variables/model OLS FGLS
Constant 2.427 2.024

(2.132) (1.236)
[1.337]

ln(GDP ) 1.025 1.080
(0.076) (0.057)
[0.070]

ln(Distance) -0.888 -0.888
(0.156) (0.110)
[0.120]

Openness 0.353 0.263
(0.206) (0.179)
[0.180]

ln(Area) -0.151 -0.203
(0.085) (0.048)
[0.050]

Sample size 49 49
R2 0.906 0.9055
Standard error of the regression 0.853
Residual sum of squares 32.017
AIC 2.6164
HQ 2.6896
SC 2.8094

Notes: OLS or FGLS standard errors in round brackets, White standard errors in square
brackets.

• Continuation in section 15.7.
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15. Model checking

Overview of the modelling process, see section 4.3.

Why is model checking necessary?

Properties of estimation and test procedures only apply under the assumptions made! =∆
Checking these assumptions is essential by carrying out statistical tests!

Review (see chapter 11.3, p. 219)

Applications of exact tests:

• Specification of the normal linear regression model and checking the assumptions,
cf. section 11.1

– (B1) and E[u|X] = 0 ((B2a)): y = X— + u contains DGP

� t-tests, see section 11.3.1; F -tests, see section 11.3.2.

� Testing the correct functional form, e. g. with RESET test, see section 15.3.

� Testing for parameter stability, e. g. with Chow test, see (11.34) in sections 11.3.2.

– (B3): XT X has rank k: violation leads to error message "‘singular matrix"’.

– (B4): u|X ≥ N(0, ‡2I):

� Assumes E[u|X] = 0, see above.

� Assumes: V ar(u|Xt) = ‡2 (Homoscedasticity): Tests for heteroscedasticity, see
section 15.2.

� Requires normally distributed errors: Lomnicki-Jarque-Bera test, see section 15.4.

• Testing economic hypotheses



15.1. Tests for autocorrelation in the errors

15.2. Tests for heteroscedastic errors

• As already mentioned, it does not make sense to use the FGLS estimator (14.17) “auto-
matically”. If the errors are homoscedastic, the OLS estimator with the usual OLS errors
should be used.

• You should therefore first test whether there is statistical evidence for heteroscedasticity.

• Two di�erent tests are presented below: The Breusch-Pagan test and the White test. Both
have “homoscedastic errors” as null hypothesis.

• In R the Breusch-Pagan test is contained in the package lmtest.

It is assumed that the assumptions for unbiasedness or consistency of the OLS estimator are
fulfilled for the multiple linear regression model

y = X— + u.

The hypothesis test refers to the validity of (B2b) or (C2b), i. e. to the presence of ho-
moscedasticity.

The hypothesis pair to be tested is

H0 : V ar(ut|Xt) = ‡2 (Homoscedasticity),
H1 : V ar(ut|Xt) = Ê2

t
”= ‡2 (Heteroscedasticity).

The basic idea of heteroscedasticity tests is that under the null hypothesis, no regressor
should have explanatory power for V ar(ut|Xt). If the null hypothesis does not hold, the
conditional variance V ar(ut|Xt) can be determined by (almost) any function of the regressors
xtj, (1 Æ j Æ k) or other regressors.

Beachte: The Breusch-Pagan test and the White test di�er with regard to their alternative
hypothesis.

15.2.1. Breusch-Pagan test

• Idea: Let’s consider the regression

u2
t

= ”0 + ”1xt1 + · · · + ”kxtk + vt, t = 1, . . . , n. (15.1)

Under assumptions (B1),(B2a),(B3), the OLS estimator for the ”j’s is unbiased.

The pair of hypotheses is therefore:

H0 : ”1 = ”2 = · · · = ”k = 0 versus
H1 : ”1 ”= 0 and/or ”2 ”= 0 and/or . . .,
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15.2. Tests for heteroscedastic errors

since under H0 it holds that E[u2
t
|X] = ”0.

• Di�erences to the previous application of the F -test:

– The squared errors u2
i

are not normally distributed under any circumstances because
they are squared values and therefore cannot be negative. This means that the vi cannot
be normally distributed either and the F -distribution of the F -statistic is not exactly
valid for finite samples.

An asymptotic F -test must therefore be used. With the results from section 11.4 and ap-
propriate regularity assumptions, it follows that k times the F -statistic is asymptotically
‰2(k) distributed.

– The errors ui are unknown. However, they can be replaced by the residuals ûi of the
OLS estimation without a�ecting the asymptotic validity of the F -test. The reason for
this is that the errors are consistently estimated by the residuals if the parameters are
consistently estimated. (The formal proof is quite complex and is omitted here.)

• One can also use the R2 version of the test statistic. Note that the R2 is zero due to
SSR = SST if a constant is used as the only regressor (there is then no regressor with
variation). We denote the coe�cient of determination of the OLS estimation from (15.1)
by R2

û2 and obtain

F = R2
û2/k

(1 ≠ R2
û2)/(n ≠ k) .

The test statistic of the overall F -test, which tests for the joint significance of all regressors,
is output by default by most software programmes.

• H0 is rejected if F or kF exceeds the critical value for a chosen significance level based on
the Fk,n≠k or ‰2(k) distribution (or if the p-value is smaller than the significance level).

• In R the test is performed with the command bptest() from the package lmtest and
returns the kF -statistic, which is asymptotically ‰2(k)-distributed.

• Note:

– If one suspects that the heteroscedasticity is caused by special variables that were not
previously considered in the regression, these can be added to the regression (15.1).

– If H0 is not rejected, this does not automatically mean that the ui’s are homoscedas-
tic. If the specification (15.1) does not contain all relevant variables that could cause
heteroscedasticity, it can happen that all ”j, j = 1, . . . , k are jointly insignificant.

– A variant of the Breusch-Pagan test is a test for multiplicative heteroscedasticity, i. e.
the variance has the form ‡2

t
= h(” + Xt—). If, for example, the case h(·) = exp(·) is

assumed, the test equation

ln(û2
t
) = ”Õ + Xt— + errors. (14.16)

is obtained.
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15.2.2. White test

• Background:
In order to derive the asymptotic distribution of the OLS estimator, the assumption of
homoscedastic errors ((B2b) or (C2b)) is not required.

It is already su�cient that the squared errors u2
t

are uncorrelated with all regressors, their
squares and their cross products.

This can be tested quite easily with the following regression, where the unknown errors
have already been replaced by the residuals:

û2
t

= ”0 + ”1xt1 + · · · + ”kxtk

+ ”k+1x
2
t1 + · · · + ”J1x2

tk

+ ”J1+1xt1xt2 + · · · + ”J2xtk≠1xtk

+ vt, t = 1, . . . , n. (15.2)

• The pair of hypotheses is:

H0 : ”j = 0 für j = 1, 2, . . . , J2,

H1 : ”j ”= 0 for at least one j.

An F -test can be used again, whose distribution is approximately the F -distribution
(asymptotic distribution).

• If you have many regressors, it is tedious to carry out the F -test for (15.2) by hand. Most
software programmes already provide the White test.

• If k is large, a large number of parameters must be estimated when performing the White
test. This can hardly be realised in small samples. In this case, only the squares x2

tj
are

included in the regression and all cross products are neglected.

• Note: If the null hypothesis is rejected, this may be because

– the errors are heteroscedastic and/or

– the model is not specified correctly.

• The White test is not automatically available in R. A separate programme whitetest()
can be found in section B.2.

15.3. Test for correct specification of the functional form: RESET test

RESET test (REgression Specification Error Test)

Idea and implementation:
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15.4. Normality test: Lomnicki-Jarque-Bera test

• The RESET test is used to check whether the present regression model

yt = Xt— + ut

is correctly specified, i. e. whether the assumptions (B1) and (B2a) or alternatively the
assumptions (C1) and (C2a) are valid and thus

E[yt|�t] = Xt— (10.1)

holds. Cf. chapter 10.

• Every term that is added to the model should therefore be insignificant. Thus, every
non-linear function of independent variables should also be insignificant.

• Therefore, the null hypothesis of the RESET test is formulated in such a way that the
significance of non-linear functions of the fitted values ŷt = Xt—̂ added to the model can
be tested. Note that the fitted values represent a non-linear function of the regressors of
the initial model.

• In practice, the second and third power of ŷt turned out to be su�cient to be able to
perform the RESET test:

yt = Xt— + –ŷt

2 + “ŷt

3 + errors. (15.3)

The pair of hypotheses is

H0 : – = 0, “ = 0 (linear model is correctly specified)
H1 : – ”= 0 and/or “ ”= 0.

This null hypothesis is tested using an F -test with 2 degrees of freedom in the numerator
and n≠k ≠2 in the denominator, whereby the resulting critical value is only asymptotically
correct.

• Note: If the null hypothesis that the initial model is correctly specified is rejected, this
can have a number of causes:

– The functional form is non-linear.

– Relevant regressors are missing.

– Heteroscedasticity is present.

• R command: resettest(), whereby the second and third power are taken into account
without further specifications (requires R package lmtest).

• See Davidson & MacKinnon (2004, Section 15.2) for more details.

15.4. Normality test: Lomnicki-Jarque-Bera test

• See Davidson & MacKinnon (2004, Section 15.2) for a detailed explanation.
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• In R the Lomnicki-Jarque-Bera test is performed with the command jarque.test() from
the package moments.

15.5. Stability tests

Chow test

see (11.34) in section 11.3.2.

15.6. Summary of an econometric modelling process

15.7. Empirical analysis of trade flows: Part 5

Continuation of section 14.4.

• RESET test of model 4:

R code (Extract from R program in section A.4)
# see section 14.3
(coeftest(mod_4_kq,vcov=hccm(mod_4_kq,type="hc1")))

Listing 15.1: ./R_code/4_�_Beispiel_Handelsstroeme_eng.R

provides:
RESET test

data: mod_4_kq
RESET = 7.14, df1 = 2, df2 = 42, p-value = 0.002142

• Breusch-Pagan test for heteroscedasticity of model 4:

R code (Extract from R program in section A.4)
################################################################################
# Section 15.7

Listing 15.2: ./R_code/4_�_Beispiel_Handelsstroeme_eng.R

provides:
studentized Breusch-Pagan test

data: mod_4_kq
BP = 4.2779, df = 4, p-value = 0.3697
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15.7. Empirical analysis of trade flows: Part 5

• White test with cross products for heteroscedasticity with the OLS residuals:

R code (Extract from R program in section A.4)
#### Perform the RESET test for model 4 with
resettest(mod_4_kq)

#### Performing the Breusch-Pagan test for model 4
bptest(mod_4_kq)

################################################################################
# Start function whitetest
################################################################################
# White test for homoskedastic errors with cross products
# RW, 2011_01_26

whitetest <- function(model){

# Extract data from model
dat <- model$model
dat$resid_sq <- model$resid^2

# Create formula for auxiliary regression
regr <- attr(model$terms, "term.labels")
form <- as.formula(paste("resid_sq~(",paste(regr,collapse="+"),")^2+",paste("I(",regr,"^2)",collapse="+"))

)

# Estimate auxiliary regression
test_eq <- lm(form,data=dat)

# Overall F-test
fstat <- summary(test_eq)$fstatistic

# Calculate and display result
result1 <- c(fstat[1],fstat[2],fstat[3],pf(fstat[1],fstat[2],fstat[3],lower.tail=FALSE))
names(result1) <- c("F-Statistic","df1","df2","P-Value")
result <- list(result1,test_eq)
return(result)

}

Listing 15.3: ./R_code/4_�_Beispiel_Handelsstroeme_eng.R

provides:
[[1]]
F-Statistic df1 df2 P-Value

0.5239004 14.0000000 34.0000000 0.9016863

[[2]]

Call:
lm(formula = form, data = dat)

Coefficients:
(Intercept) log(wdi_gdpusdcr_o) log(

cepii_dist)
-77.25103 3.91926

4.08526
I(log(wdi_gdpusdcr_o)^2) I(log(cepii_dist)^2) I(ebrd_

tfes_o^2)
-0.02898 0.18986

0.20200
log(wdi_gdpusdcr_o):ebrd_tfes_o log(wdi_gdpusdcr_o):log(cepii_area_o) log(cepii_dist):ebrd

_tfes_o
-0.71004 0.08044

-0.98879
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ebrd_tfes_o log(cepii_area_o)
15.48882 -2.91347

I(log(cepii_area_o)^2) log(wdi_gdpusdcr_o):log(cepii_dist)
-0.04813 -0.06623

log(cepii_dist):log(cepii_area_o) ebrd_tfes_o:log(cepii_area_o)
-0.07797 0.61849

• Results:

– The RESET test provides a rejection of the null hypothesis of correct specification at the
1% significance level. This means that quadratic terms may play an explanatory role,
e. g. I((log(wdi_gdpusdcr_o)). However, taking this additional regressor into account
does not lead to an insignificant RESET test statistic. This may be due to outliers.

– Both the Breusch-Pagan test and the White test do not reject the null hypothesis
of homoscedastic OLS residuals at any useful significance level. Thus, the use of
heteroscedasticity-robust standard errors or FGLS in section 14.4 was not e�cient.

– Breusch-Pagan test and White test also do not reject the null hypothesis of homoscedastic
standardised FGLS errors. The p-values increase again significantly to over 50%.

– A final model has not yet been found due to the strong rejection of the RESET test,
even with a quadratic regressor.
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A. R Programs

A.1. R programs for Graphs in Section 2.5 to Distribution and Density
Functions

CDF and PDF of the standard normal distribution, see figure 2.1
# Distribution and density function of the standard normal distribution
# KK, 21.10.2010, RT, 29.09.2015 (pdf- instead of eps-graphs)

#######
# Density function of the standard normal distribution
#######

# Open the graph output and specify that save as .eps-file
# (filename, size of the graph)
#postscript("pdf_std_normal.eps", height=4, width=6, horizontal=FALSE)
# or save as .pdf
pdf("pdf_std_normal_eng.pdf", height=4, width=6)

# Parameters for graphs: (optional)
# las=1: Axis scaling horizontal
# mai: width of margins (bottom, left, top, right)
# mgp: position of axes, axis scaling and axis labelling
par(las=1, mai=c(0.6,0.1,0.1,0.1), mgp=c(1.5,1,0))

# Plot the two points (-3.5,0) and (3.5,0.48) (-> proportions of the graph)
# type="n": empty plot
# bty="n": no box around the graph
# xaxt="n", yaxt="n": no x- and y-axis
# xlab="x", ylab="": x-axis labelling is x, y-axis unlabelled
plot(c(-3.5,3.5), c(0,0.48), type="n", bty="n", xaxt="n", yaxt="n",

xlab="x", ylab="")

# Complement the axes (1 x-axis, 2 y-axis)
# pos=0: Axis goes through 0
# labels: Axis scaling
# at: Positions of the axis scaling
axis(1, pos=0, labels=-3:3, at=-3:3)
axis(2, pos=0, labels=1:4/10, at=1:4/10)
# x-axis too short -> extend with line at y=0 (h horizontal line)
# y-axis too short -> draw a line from 0 to 0.44
abline(h=0)
lines(c(0,0), c(0,0.44))
# y-axis labelling
text(0, 0.472, expression(phi(x)))

# Plot the function
# dnorm: density of the normal distribution (analogously pnorm: distribution function)
# from, to: range in which the function is plotted
# add=TRUE: plots into existing graph window
plot(function(x) dnorm(x), from=-3.5, to=3.5, add=TRUE)



# Close the current graphs window (e.~g. .eps or .pdf file)
dev.off()

#######
# Distribution function of the standard normal distribution
#######

# postscript("cdf_std_normal.eps", height=4, width=6, horizontal=FALSE)
pdf("cdf_std_normal_eng.pdf", height=4, width=6)

par(las=1, mai=c(0.6,0.1,0.1,0.1), mgp=c(1.5,1,0))

plot(c(-3.5,3.5), c(0,1.2), type="n", bty="n", xaxt="n", yaxt="n",
xlab="x", ylab="")

axis(1, pos=0, labels=-3:3, at=-3:3)
axis(2, pos=0, labels=c("",0.5,1), at=c(0,0.5,1))
abline(h=0); lines(c(0,0), c(0,1.1))
text(0, 1.18, expression(Phi(x)))

plot(function(x) pnorm(x), from=-3.5, to=3.5, add=TRUE)

dev.off()

Listing A.1: ./R_code/2_5_Plot_PDF_CDF_StNormal_eng.R
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A.1. R programs for Graphs in Section 2.5 to Distribution and Density Functions

0.85-quantile of the standard normal distribution, see figure 2.2
# R program on quantiles, section confidence intervals
# RT,KK, 01.02.2011

alpha <- 0.85 # Set probability for quantile
dev.off() # Close all graph windows
split.screen(c(2,1)) # Split a graph window
# Plot density function
screen(1)
plot(function(x) dnorm(x), from=-4, to=4, lwd=2, ylab="Density",

main="Standard normal distribution")
abline(h=0)
abline(v=qnorm(alpha), col="red")

# Plan: Draw a polygon (which can then be coloured).
# Polygon first needs all x-values, then all y-values
# these are then connected
# x-values: from -4 to qnorm(alpha) (-> x_tmp)
# y-values: density values for the x-values
x_tmp <- seq(from=-4, to=qnorm(alpha), length.out=1000)
polygon(c(x_tmp, x_tmp[length(x_tmp)]), # last double (point q_alpha,0)

c(dnorm(x_tmp), 0), # last 0 (Punkt y_alpha,0)
border=NA, # no border
density=10, # dashed, 10%
col="blue") # colour

# Plot probability function
screen(2)
plot(function(x) pnorm(x), from=-4, to=4, lwd=2, ylab="Probability function",

main="Standard normal distribution")
abline(h=alpha)
abline(v=qnorm(alpha),col="red")

Listing A.2: ./R_code/2_5_Plot_Quant_StNormal_eng.R
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PDF of the bivariate normal distribution, see figure 2.3
# Density function of the bivariate normal distribution
# RT, 21.10.2010, 25.10.2010

rm(list = ls()) # cleans workspace

# install package mnormt if not installed yet
if(!require(mnormt)){

install.packages("mnormt")
}

library(mnormt) # load package mnormt

# parameters of bivariate normal distribution
mu_1 <- 0
mu_2 <- 0

sigma_1 <- 1
sigma_2 <- 1
rho <- 0.0

# determine mean vector

Mean <- c(mu_1,mu_2)

# compute variance-covariance matrix

sigma2_1 <- sigma_1^2
sigma2_2 <- sigma_2^2
sigma_12 <- sigma_1 * sigma_2 * rho

Sigma <- matrix(c(sigma2_1,sigma_12,sigma_12,sigma2_2),2)

# determine grid on which density is computed

x1_limit <- mu_1 + 3*sigma_1
x2_limit <- mu_2 + 3*sigma_2
ngridpoints <- 50

x1 <- seq(-x1_limit,x1_limit,2*x1_limit/(ngridpoints-1))
x2 <- seq(-x2_limit,x2_limit,2*x2_limit/(ngridpoints-1))
X <- expand.grid(x1=x1,x2=x2)

# compute density
Density <- apply(X,1,dmnorm,mean=Mean,varcov=Sigma)

Density <- matrix(Density,length(x1),length(x2),byrow=FALSE)

# Colors for surface = estimates
n_col <- 80
nrDensity <- nrow(Density)
ncDensity <- ncol(Density)
Densitylim <- c(min(Density),max(Density))
#couleurs <- tail(heat.colors(trunc(1 * n_col)),n_col)
couleurs <- topo.colors(trunc(1 * n_col))
Densitycol <- couleurs[trunc((Density-Densitylim[1])/

(Densitylim[2]-Densitylim[1])*(n_col-1))+1]
dim(Densitycol) <- c(nrDensity,ncDensity)
Densitycol <- Densitycol[-nrDensity,-ncDensity]

# plot surface and contour lines
pdf("Biv_Normal_Surface_col_eng.pdf", height=6, width=6)
#par(mfrow=c(1,1))
#split.screen(c(2,1))
#screen(1)
par(mai=c(0.5,0.5,0.3,0.1))
persp(y=x1, x=x2, z=Density, col=Densitycol,

main="Density of Bivariate Normal Distribution for (x1,x2)" ,
theta=35, phi=20 , r=10, shade=0.1, ticktype="detailed")
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A.1. R programs for Graphs in Section 2.5 to Distribution and Density Functions

dev.off()

# ?contour
# screen(2)
pdf("Biv_Normal_Surface_con_eng.pdf", height=6, width=6)
contour(x1,x2,Density,nlevels=50,main="Density of Bivariate Normal Distribution for (x1,x2)" )
dev.off()
# close.screen(all=TRUE)

Listing A.3: ./R_code/2_5_Plot_PDF_biv_Normal_eng.R
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A.2. R Programs for Monte Carlo Simulation in the Section 5.5.1
concerning the Law of Large Numbers

# ======================== 5_4_MC_bar_y_LLN_CLT_eng.R ==============================
#
# Program for Monte Carlo simulation
# to illustrate the LLM and CLTs of the arithmetic mean
# Calculates mean and standard deviation over all replications
# as well as histograms
# DGP: mean + chi-squared distributed error
# Note: Program is written with for-loops for readability
# Status: RT, 2015_10_02

graphics.off() # Close all graphic windows

# Set parameters of the model and the Monte Carlo simulation

set.seed(42) # Randomseed
N <- c(10,50,100,500) # Sample sizes
R <- 10000 # Number of replications

mu <- 1 # Mean value
deg_freedom <- 1 # Degrees of freedom of the qui-squared distribution
sigma <- 2 # Standard deviation of the error

save.pdf <- 1 # 1=create PDFs of graphs, 0=otherwise
# Form two loops:
# Outer loop on the number of replications
# Inner loop on the sample size

n_max <- N[length(N)] # Maximum sample size
# Initialise the output matrices
mu_hat_store <- matrix(0,nrow=R,ncol=length(N))
mu_tilde_store <- matrix(0,nrow=R,ncol=length(N))

for (r in (1:R))
{

# Fenerate a realisation of a simple linear regression model
# for the maximum sample size
u <- rchisq(n_max,df=deg_freedom,) # Drawing u
u <- (u-deg_freedom)/sqrt(2*deg_freedom) # Standardising
y <- mu+u

for (i in (1:length(N)))
{

# Store the estimates
mu_hat_store[r,i] <- mean(y[1:N[i]]) # arithm. mean
mu_tilde_store[r,i] <- (y[1]+y[N[i]])/2 # alternative estimator

}
}

# Calculate the arithmetic means of the parameter estimates
mu_hat_mean <- colMeans(mu_hat_store)
mu_tilde_mean <- colMeans(mu_tilde_store)

# Calculate the variances of the parameter estimates
mu_hat_sd <- sqrt(diag(var(mu_hat_store)))
mu_tilde_sd <- sqrt(diag(var(mu_tilde_store)))

# Display on screen
(cbind(N,mu_hat_mean,mu_hat_sd,mu_tilde_mean,mu_tilde_sd))

# Create histograms
if (save.pdf) pdf("plot_MC_mu_hat_Konsistenz_eng.pdf", height=6, width=6)
par(mfrow=c(2,2)) # Draw four plots in a graphic window
for (i in (1:4))
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A.3. R Programs for Graphs in the Section 5.6 on Basics of Tests

{
# Sample size N[i]
hist(mu_hat_store[,i], breaks=sqrt(R),

xlab=expression(hat(mu)), main=paste("Histogram for n= ",N[i],sep=""))
}
if (save.pdf) dev.off()

if (save.pdf) pdf("plot_MC_mu_tilde_Konsistenz_eng.pdf", height=6, width=6)
par(mfrow=c(2,2)) # Draw four plots in a graphic window
for (i in (1:4))
{

# Sample size N[i]
hist(mu_tilde_store[,i], breaks=sqrt(R),

xlab=expression(tilde(mu)), main=paste("Histogram for n= ",N[i],sep=""))
}
if (save.pdf) dev.off()
# ========================= End ==================================

Listing A.4: ./R_code/5_4_MC_bar_y_LLN_CLT_eng.R

A.3. R Programs for Graphs in the Section 5.6 on Basics of Tests

Test on mean value of the DAX, see page 127
# ===================== 5_5_Test_Mean_DAX_eng.R ===============================#
# Program tests expected value of DAX returns.
# Data comes from Yahoo-Finance
# Options for loading data:
# a) directly from Yahoo-Finance
# b) download a csv file from Yahoo-Finance and read it into R
# c) for info: load .xlsx files into R,
# e.g. if .csv file was converted into .xlsx file
# Status: 2015_10_01, ....
# 2021_11_25, RT substantial revision

# -------------- load packages --------------------------------------------------
# Package for zoo data frame, which allows exact dates to be specified

if (!require(zoo)) install.packages("zoo")
library(zoo) # RT, 2021_11_24

# Package with command for direct download of data from Yahoo-Finance
if (!require(tseries)) install.packages("tseries") # requires library zoo
library(tseries)

# Package for loading xlsx files
if (!require(readxl)) install.packages("readxl")
library(readxl)

# -------------- set parameters ----------------------------------------------
price_to_check <- "Close" # "Open", "High", "Low", "Close", "

# Adj.Close" (only for .csv or .xlsx files)
csv_file_name <- "^GDAXI.csv"
excel_file_name <- "DAX_19930401_20211123.xlsx"

# for Yahoo download
series_yahoo <- "^GDAXI" # choose which price to analyse
# the first entry indicates for which index / security the prices are to be
# downloaded (use of Yahoo-Finance designations)

start_yahoo <- "1993-04-01" # Start
end_yahoo <- "2022-11-28" # End

alpha <- 0.05 # Significance level

# Set working directory to the directory of the R-file in RStudio via
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# Session -> Set Working Directory -> To Source File Location.
# or use the following two lines after uncommenting:
# WD <- "" # Add directory structure for R-file
# setwd(WD) # set it as working directory

# ---------------- Load DAX data ----------------------------------------

# To a) Download directly from Yahoo-Finance:
# Use package "tseries" which contains the command get.hist.quote()
# which allows direct download from yahoo.finance.
# The command returns a zoo data frame.
# A zoo data frame is a special data frame that allows a more detailed
# control of dates than the normal data frame in R.

data_all_zoo <- get.hist.quote(instrument = series_yahoo,
start = start_yahoo, end = end_yahoo)

# Command in package tseries
head(data_all_zoo)
tail(data_all_zoo)
data_all_zoo[(1:10),]

# To b) Load data from .csv file downloaded earlier from Yahoo-Finance:

data_all <- read.csv(csv_file_name, header = TRUE, sep = ",",
na.strings = "null",
colClasses = c("Date", rep("numeric", 6)) )

data_all_zoo<- zoo(x = data_all[,-1], order.by = as.Date(data_all[,1]))
head(data_all_zoo)
tail(data_all_zoo)

# To c):
# c1) Use package "readxl", which does not require Java.
# However, it returns a "tibble" instead of a "data frame",
# which can be converted directly into a zoo data frame.

excel_daten <- read_xlsx(path = excel_file_name, range = "Tabelle1!A1:G7362",
col_names = TRUE, col_types = c("date", rep("numeric",6)), na = "null")

excel_daten_zoo <- zoo(x = excel_daten[,-1], order.by = as.Date(excel_daten$Date) )
head(excel_daten_zoo)
tail(excel_daten_zoo)

# c2) Use package "xlsx"
# requires older Java version to be present,
# therefore does not work on every MAC
# therefore commented out with ## in the following.

## if (!require(xlsx)){
## install.packages("xlsx")
## }
## library(xlsx) # library to read files in xls or xlsx format.
##
## excel_daten <- read.xlsx(excel_file_name, sheetIndex = 1, colIndex = (1:7),
## startRow = 1, colClasses = c("Date", rep("numeric",6)), header = TRUE)
## # create zoo data frame with exact dates
## excel_daten_zoo<- zoo(x = excel_daten[,-1], order.by = excel_daten[,1])
## head(excel_daten_zoo)
## tail(excel_daten_zoo)
##
## data_all_zoo <- excel_daten_zoo

# ------------------------ Plot and calculate returns ----------------------

price_all_zoo <- data_all_zoo[, price_to_check] # Choose price type

## price_zoo <- rev(price_zoo) # only for Excel file for data up to 2015
## sort prices so that oldest value is at the beginning of the price-vector so
## that returns are calculated correctly
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A.3. R Programs for Graphs in the Section 5.6 on Basics of Tests

plot(price_all_zoo, ylab = price_to_check, xlab = "Year") # Plot the data

price_zoo <- na.omit(price_all_zoo) # Remove missing values
n <- length(price_zoo) # Number of observations

# Derive left critical value for two-sided test
crit_left <- qt(alpha/2, df = n-1)

# A) Calculate the returns and the corresponding t-statistic

r <- (price_zoo[2:n] - as.numeric(price_zoo[1:(n-1)])) /
as.numeric(price_zoo[1:(n-1)])

# the first value is used as a zoo dataframe to keep the correct date.
# The delayed values are used without a date by converting the values to
# "numeric" so as not to create a conflict in the date.

plot(r, xlab = "Year", ylab = "Returns")
tail(r)
mean(r)
sd(r)
(t <- mean(r)/(sd(r)/sqrt(n))) # Calculate test statistic

plot(density(r)) # Estimate density of returns
plot(function(x) dnorm(x, mean = mean(r), sd = sd(r) ),

from = min(r), to =max(r), add=TRUE, col = "red")
# Add density of the normal distribution
# with mean and SD of the returns

# B) Calculate the log returns and the corresponding t-statistic
r_log <- diff(log(price_zoo), lag=1)

# the diff() command can handle zoo data frames

plot(r_log, xlab = "Year", ylab = "Log-Returns")
tail(r_log)
mean(r_log)
sd(r_log)
(t_log <- mean(r_log)/(sd(r_log)/sqrt(n))) # Calculate test statistic

plot(density(r_log)) # Estimate density of log returns
plot(function(x) dnorm(x, mean = mean(r_log), sd = sd(r_log) ),

from = min(r_log), to =max(r_log), add=TRUE, col = "red")
# Add density of the normal distribution
# with mean and SD of the log returns

# ==================== End ==============================================

Listing A.5: ./R_code/5_5_Test_Mean_DAX_eng.R
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Power function of the test on the mean value, see figure 5.3
# ======================== 5_5_Plot_Power_Function_eng.R ==========================
# Program to create the graph for plotting the power function
# in slides Methods, Section 4.1
# created by: RT, 2012_12_20, kor. 2015_12_01, 2021_10_21 (sigma_0 removed from X-signature)

# ===== Define function to calculate power
z_power <- function(c, mu_v, sigma_mu, mu_H0)
{

power_left <- pnorm(-c, mean = (mu_v - mu_H0)/sigma_mu, sd=1)
power_right <- 1 - pnorm(c, mean = (mu_v - mu_H0)/sigma_mu, sd=1)
return(power_left + power_right)

}
# ==== End Function =============================

# Parameters for plot

graphics.off() # Close all graphic windows

alpha <- 0.05 # Significance level
n <- 50 # Number of observations
mu_H0 <- 0 # Mean value under H_0
sigma <- 1 # Standard deviation

save.pdf <- 1 # 1=create PDFs of graphs, 0=otherwise

c <- qnorm(1 - alpha/2) # Calculate critical value
mu_v <- seq(mu_H0 - 2, mu_H0 + 2, 0.1) # Grid for density under H_1

# Create plot

if (save.pdf) pdf("plot_power_function_2021_eng.pdf", height=4, width=7)
plot(mu_v, z_power(c, mu_v, sigma/sqrt(n), mu_H0), type="l",

xlab = expression(mu[0]-mu[H[0]]#/(sigma[0]/sqrt(n)))
), ylab="Power function")

abline(h = 0.05, col = "red")
axis(2, at = 0.05, labels = expression(alpha), tick=FALSE)
lines(mu_v, z_power(c, mu_v, 2 * sigma/sqrt(n), mu_H0), type="l", col="blue")
if (save.pdf) dev.off()
# ========================= End ====================== ========================

Listing A.6: ./R_code/5_5_Plot_Power_Function_eng.R
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A.3. R Programs for Graphs in the Section 5.6 on Basics of Tests

Illustration of the power function on a grid, see figure 5.4
# ================== power_function_persp ==================================
# Program for creating the perspective graph for displaying the power
# function in slides Methods, section 4.1
# created by: RT, 2012_12_20, 2022_12_06 Adaptation to macOS with x11()
# requires XQuartz, which needs to be installed additionally, and library(tcltk)
# Note: If library aplpack is not installed, install it first!
# Load the library aplpack, which contains the functions for slider

graphics.off() # Close all graphic windows
library(aplpack)# Load the library aplpack
library(tcltk) # 2022_12_06, RT: is necessary for XQuartz

# =================== Define functions ====================================
# ----------------------- z_power_grid------------------------------------------
z_power_grid <- function(mu_d_sigma_mu,mu_0,c)
{

mu_v <- mu_d_sigma_mu[1]
sigma_mu <- mu_d_sigma_mu[2]
power_left <- pnorm(-c,mean=(mu_v-mu_0)/sigma_mu,sd=1)
power_right <- 1-pnorm(c,mean=(mu_v-mu_0)/sigma_mu,sd=1)
return(power_left+power_right)

}
# ---------------------- End z_power_grid ---------------------------------------

# ----------------------- col_persp -------------------------------------------
# Function for colouring the surface
col_persp <- function(Z)

{
# Colors for surface = estimates
n_col <- dim(Z)
nrZ <- nrow(Z)
ncZ <- ncol(Z)
Zlim <- c(min(Z),max(Z))
couleurs <- heat.colors(trunc(1 * n_col))
# couleurs <- topo.colors(trunc(1 * n_col))
Zcol <- couleurs[trunc((Z-Zlim[1])/(Zlim[2]-Zlim[1])*(n_col-1))+1]
dim(Zcol) <- c(nrZ,ncZ)
return(Zcol <- Zcol[-nrZ,-ncZ])
}

# ---------------------- End col_persp---------------------------------------

# ----------------------- flexible plot -----------------------------------
beweglicher_plot <- function(...)

# Create perspective graph
{

persp(x=mu_v,y=sigma_mu_v,z=power_grid_mat, ticktype="detailed", col=power_grid_col,
r=slider(no=3), #5,
xlab = expression(mu[0]-mu[H[0]]), ylab = expression(sigma/sqrt(n)),
zlab = "Power function",
theta=slider(no=1), #35,
phi=slider(no=2), #20,
expand=1) -> res #phi = 30

}
# ----------------------- End flexible plot --------------------------------
# ========================= End functions ====================================

# ========================= Main program ======================================
# Define parameters

alpha <- 0.05 # significance level
mu_0 <- 0 # mean value under H_0
mu_diff <- 1

sigma <- 1 # standard deviation
sigma_min <- sigma
sigma_max <- sigma
n_min <- 20
n_max <- 1000
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c <- qnorm(1-alpha/2) # critical value

# Grid
# grid for mu

mu_v <- seq(mu_0-mu_diff,mu_0+mu_diff,0.05)
# grid for sigma_hat_mu

sigma_mu_step <- (sigma/sqrt(n_min)-sigma/sqrt(n_max))/(length(mu_v)-1)
sigma_mu_v <- seq(sigma/sqrt(n_max),sigma/sqrt(n_min),by=sigma_mu_step)

grid <- expand.grid(mu_v,sigma_mu_v)
power_grid <- apply(grid,1,z_power_grid,mu_0,c)
power_grid_mat <- matrix(power_grid,length(mu_v),length(sigma_mu_v),byrow=FALSE)

# Colour hyperplane of subspace with function "col_persp", see above
power_grid_col <- col_persp(power_grid_mat)

# create the 3D graph
# call slider with function beweglicher_plot to create and possibly
# rotate the 3D graph
# windows() # opens a new graphic window,

# 2022_12_06, RT: Command only works on Windows
x11() # also works on MacOS
slider(beweglicher_plot,

sl.names = c("turn", "tilt", "distance"),
sl.mins = c(0, 0, 1), # minimum values for sliders
sl.maxs = c(360, 360, 100), # maximum values for sliders
sl.deltas = c(1, 1, 1), # step size for sliders
sl.defaults = c(35, 20, 5) # default values for parametersr
, prompt = TRUE # ensures that the effect of a slider movement is

# seen immediately on the screen and not only
# after releasing the mouse button

)
# End slider

Listing A.7: ./R_code/5_5_Plot_Power_Function_Persp_eng.R

A.4. R Program for an Empirical Example about Trade Flows, starting in
Section 6.3

################### 4_ff_Beispiel_Handelsstroeme_eng.R #############################
#
################################################################################
################################################################################
# Example of trade flows in the Methods of Econometrics script,
# University of Regensburg
# Commented R code
# Status: 01.10.2015, RT 22.12.2021 (library stargazer), RT 2023_01_17 attempt to include AIC etc in atargazer -

did not work
# Antecedent:
# - aussenhandel_beispiel_hk.r WS 2014/15 for part up to
# END COMPULSORY COURSE PO 2011 - MATERIAL
# - aussenhandel_beispiel_pflichtkurs.r
################################################################################
################################################################################
# In order to be able to run the script, the data for the
# trade flows example "importe_ger_2004_ebrd.txt" is needed.
#
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A.4. R Program for an Empirical Example about Trade Flows, starting in Section 6.3

# Note: First the functions stats and SelectCritEviews are defined.
# Then the main program begins in line ??

################################################################################
# Start definition functions
################################################################################

############################ Function stats ####################################
# Useful function that returns statistical key figures when a vector is entered
# analogous to EViews-Output of "Descriptive Statistics"
#

stats <- function(x) {

n <- length(x)
sigma <- sd(x) * sqrt((n-1)/n)
skewness <- 1/n * sum(((x-mean(x))/sigma)^3)
kurtosis <- 1/n * sum(((x-mean(x))/sigma)^4)
jarquebera <- n/6*((skewness)^2 + 1/4 * ((kurtosis-3))^2)
pvalue <- 1- pchisq(jarquebera, df = 2)

Statistics <- c(mean(x), median(x), max(x), min(x), sd(x),
skewness, kurtosis, jarquebera, pvalue)

names(Statistics) <- c("Mean", "Median", "Maximum", "Minimum", "Std. Dev.",
"Skewness", "Kurtosis", "Jarque Bera", "Probability")

return(data.frame(Statistics))
}
############################### End ###########################################

####################### Function SelectCritEviews ##############################
# Function for calculating model selection criteria as in EViews
# RT, 2011_01_26

SelectCritEviews <- function(model)
{

n <- length(model$residuals)
k <- length(model$coefficients)
fitmeasure <- -2*logLik(model)/n

aic <- fitmeasure + k * 2/n
hq <- fitmeasure + k * 2*log(log(n))/n
sc <- fitmeasure + k * log(n)/n
sellist <- list(aic=aic[1],hq=hq[1],sc=sc[1])
return(t(sellist))

}
############################### End ###########################################

################################################################################
# End definition functions
################################################################################

################################################################################
# Start main program
################################################################################
save.pdf <- 1 # 1=create PDFs of graphs, 0=otherwise

# The following libraries are loaded during the process: car,lmtest

# If these are not installed, they will be installed first:
if (!require(car)){

install.packages("car")
}
if (!require(lmtest)){

install.packages("lmtest")
}

# Determination of the working directory
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# in which the R program and the data are located
WD <- getwd() # Determine the directory of the R file and
setwd(WD) # set it as working directory

# Read the data as data frame
daten_all <-read.table("importe_ger_2004_ebrd.txt", header = TRUE)
# Assign the variable names and
# eliminate the observation export country: GER, import country: GER.
attach(daten_all[-20,])

# To try out, if importe_ger_2004_ebrd.txt has already been read in
stats(trade_0_d_o)

################################################################################
# Section 6.3
################################################################################

############# Scatterplot with (linear) regression line #####################
# I.1 Aim/scientific issue: first empirical attempt

# Define file name for output in PDF format
if (save.pdf) pdf("plot_wdi_vs_trade.pdf", height=6, width=6)

# OLS estimation of a simple linear regression model, stored in ols
ols <- lm(trade_0_d_o ~ wdi_gdpusdcr_o)
# Scatterplot of the two variables
plot(wdi_gdpusdcr_o, trade_0_d_o, col = "blue", pch = 16)
# Plot the linear regression line using abline
abline(ols, col = "red")
# Add a legend
legend("bottomright", "Lineare Regression", col = "red", lty = 1, bty = "n")

# Close device
if (save.pdf) dev.off()

######## Estimate two multiple linear regression models ##############
# II.3 Specifying, estimating and selecting an econometric model
# Note:
# The numbering of the regression models is based on
# the models in the script, section 10.3

# Run a linear regression and save the results as an object
mod_2_kq <- lm(log(trade_0_d_o) ~ log(wdi_gdpusdcr_o) + log(cepii_dist))

# Display of the regression results
summary(mod_2_kq)

# II.4 Validating the estimated model
# Running linear regression with additional regressor and
# using the formula command
mod_3a_formula <- log(trade_0_d_o) ~ log(wdi_gdpusdcr_o) + log(cepii_dist) +

ebrd_tfes_o
mod_3a_kq <- lm(mod_3a_formula)
# Display the regression results of the second linear regression model
summary(mod_3a_kq)

################################################################################
# Section 8.2
################################################################################
# Functional form: level-level, ... , log-log

summary(lm(trade_0_d_o ~ wdi_gdpusdcr_o)) #level - level model
summary(lm(trade_0_d_o ~ log(wdi_gdpusdcr_o))) #level - log model
summary(lm(log(trade_0_d_o) ~ wdi_gdpusdcr_o)) #log - level model
summary(lm(log(trade_0_d_o) ~ log(wdi_gdpusdcr_o))) #log - log models
summary(lm(log(trade_0_d_o) ~ log(wdi_gdpusdcr_o)+log(cepii_dist)))

################################################################################
# Section 8.5
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A.4. R Program for an Empirical Example about Trade Flows, starting in Section 6.3

################################################################################
# Is there a non-linear relationship between imports and GDP?
# Simple modelling option: GDP regressor is also quadratic in the model

# Model 5: Also use log(BIP)^2 as regressor
mod_5_formula <- log(trade_0_d_o) ~ log(wdi_gdpusdcr_o) +

I(log(wdi_gdpusdcr_o)^2) + log(cepii_dist) + ebrd_tfes_o + log(cepii_area_o)

mod_5_kq <- lm(mod_5_formula)
summary(mod_5_kq)

# Generate plot of elasticities for different GDPs
elast_gdp <- mod_5_kq$coef[2] + 2* mod_5_kq$coef[3]*log(wdi_gdpusdcr_o)
# Create scatterplot
if (save.pdf) pdf("plot_modell5_elast.pdf.pdf", height=6, width=6)
plot(wdi_gdpusdcr_o, elast_gdp, pch = 16, col = "blue", main = "GDP-Elasticity")
if (save.pdf) dev.off()

################################################################################
# Section 9.5
###############################################################################
# Estimate the variance-covariance matrix of the OLS estimators for model 3a
summary(mod_3a_kq)$cov

# Estimate the correlation matrix of the OLS estimators for model 3a
cov2cor(summary(mod_3a_kq)$cov)

# Estimate the covariance matrix of sample observations for model 3a
cor(data.frame(log_wdi_gdpusdcr_o = log(wdi_gdpusdcr_o),

log_cepii_dist=log(cepii_dist),ebrd_tfes_o))

################################################################################
# Section 10.3 Information Criteria
################################################################################

# Calculate the values of the table
# Apply the function "SelectCritEviews" to four different models

mod_1_kq <- lm(log(trade_0_d_o) ~ log(wdi_gdpusdcr_o))
summary(mod_1_kq)
deviance(mod_1_kq) # Calculates SSR
SelectCritEviews(mod_1_kq) # Calculates AIC, HQ, SC

mod_2_kq <- lm(log(trade_0_d_o) ~ log(wdi_gdpusdcr_o) + log(cepii_dist))
summary(mod_2_kq)
deviance(mod_2_kq) # Calculates SSR
SelectCritEviews(mod_2_kq) # Calculates AIC, HQ, SC

mod_3a_kq <- lm(log(trade_0_d_o) ~ log(wdi_gdpusdcr_o) + log(cepii_dist) +
ebrd_tfes_o)

summary(mod_3a_kq)
deviance(mod_3a_kq) # Calculates SSR
SelectCritEviews(mod_3a_kq) # Calculates AIC, HQ, SC

mod_3b_kq <- lm(log(trade_0_d_o) ~ log(wdi_gdpusdcr_o) + log(cepii_dist) +
log(cepii_area_o))

summary(mod_3b_kq)
deviance(mod_3b_kq) # Calculates SSR
SelectCritEviews(mod_3b_kq) # Calculates AIC, HQ, SC

mod_4_kq <- lm(log(trade_0_d_o) ~ log(wdi_gdpusdcr_o) + log(cepii_dist) +
ebrd_tfes_o + log(cepii_area_o))

summary(mod_4_kq)
deviance(mod_4_kq) # Calculates SSR
SelectCritEviews(mod_4_kq) # Calculates AIC, HQ, SC

# RT 2021_12_22: Automatic creation of a table (also for latex)
library(stargazer)
stargazer(mod_1_kq, mod_2_kq, mod_3a_kq, mod_3b_kq, mod_4_kq, type = "text"
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#keep.stat = "aic"
)
# RT 2023_01_17: keep.stat = C("all") added

################################################################################
################################################################################
# Section 11.3 Exact Tests
################################################################################

alpha <- 0.05 # Significance level
# Estimating model 4
mod_4_kq <- lm(log(trade_0_d_o) ~ log(wdi_gdpusdcr_o) +

log(cepii_dist) + ebrd_tfes_o + log(cepii_area_o))
summary(mod_4_kq)
qf(1-alpha,2,44) # Critical value
library(car) # Library car load for F-test

# F-test
F_stat <- linearHypothesis(mod_4_kq,

c("ebrd_tfes_o=0","log(cepii_area_o)=0"),
test=c("F"))

F_stat
# Chi^2-test

F_stat <- linearHypothesis(mod_4_kq,
c("ebrd_tfes_o=0","log(cepii_area_o)=0"),
test=c("Chisq"))

F_stat

################################################################################
# Section 11.7 Empirical analysis of trade flows
################################################################################

# Model 4 was calculated in section 10.3
resid_mod_4_kq <- mod_4_kq$resid # Residuals of model 4
trade_0_d_o_fit <- mod_4_kq$fitted # Fitted values of model 4

# Plot of residuals vs. fitted values
if (save.pdf) pdf("plot_fits_vs_resids_mod_4.pdf", 6, 6)
plot(trade_0_d_o_fit, resid_mod_4_kq, col = "blue", pch = 16, main = "Scatterplot")
if (save.pdf) dev.off()

# Plot of the histogram of the residuals
if (save.pdf) pdf("plot_hist_resids_mod_4.pdf", 6, 6)
hist(resid_mod_4_kq, breaks = 20, col = "lightblue", prob = T, main = "Histogram")

# Estimated density of the residuals
lines(density(resid_mod_4_kq),col = "black", prob = T, add="T")

# Plot the corresponding theoretical normal distribution
curve(dnorm(x, mean = mean(resid_mod_4_kq), sd = sd(resid_mod_4_kq)),

from = -3, to = 3, add = T, col = "red", lty = 2, lwd = 2)
legend("topleft", c("est. density","theoretical\nnormal distribution"),

col = c("black","red"), lwd = 2, lty = c(1,2), bty = "n")
if (save.pdf) dev.off()

# statistical evaluation of the residuals
stats(resid_mod_4_kq)

#### Confidence intervals
confint(mod_4_kq)

#### t-tests, two-tailed and one-tailed

# Two-tailed test
# Determining the critical values

alpha <-0.05
qt(alpha/2,mod_4_kq$df)
qt(1-alpha/2,mod_4_kq$df)

# t-statistic
(t <- (coefficients(mod_4_kq)["log(wdi_gdpusdcr_o)"]-1)/
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A.4. R Program for an Empirical Example about Trade Flows, starting in Section 6.3

sqrt(vcov(mod_4_kq)["log(wdi_gdpusdcr_o)","log(wdi_gdpusdcr_o)"]))

# p-value
2*pt(-abs(t),mod_4_kq$df)

# Alternative via F
# for this you need the car package

# download.packages("car", destdir="C:/Program Files/R/R-2.15.1/library")
# install.packages("car")

library("car")
(F_stat <- linearHypothesis(mod_4_kq,c("log(wdi_gdpusdcr_o)=1")))

# One-tailed test with left alternative
# Critical values

alpha <-0.05
(qt(alpha,mod_4_kq$df))

# t-test statistic
(t <- summary(mod_4_kq)$coefficients["log(cepii_dist)",3])

# p-value
(pt(t,mod_4_kq$df))

#### F-test, correlation matrix and confidence ellipses

# F-test with 2 restrictions
# critical value for F-statistic

(qf(1-alpha,2,mod_4_kq$df))

# F-statistic
(F2_stat <- linearHypothesis(mod_4_kq,c("ebrd_tfes_o=0","log(cepii_area_o)=0"),

test=c("F")))

# chi^2-test
# critical value for chi^2-statistic

(qchisq(1-alpha,2))

# chi^2-statistic
(Chisq_stat <- linearHypothesis(mod_4_kq,c("ebrd_tfes_o=0","log(cepii_area_o)=0"),

test=c("Chisq")))

#### Covariance and correlation matrix

# Covariance matrix
(cov_par <- vcov(mod_4_kq))

# Correlation matrix
(corr_par <- cov2cor(cov_par))

#### Confidence ellipsoids

# Confidence ellipse
if (save.pdf) pdf("plot_conf_ellipse.pdf", 6, 6)
confidenceEllipse(mod_4_kq, which.coef = c(4, 5), levels = 0.95,

main = "confidence ellipse", col = "red")
# Confidence interval
abline(v = confint(mod_4_kq, "ebrd_tfes_o", level = 0.95), lty = 2,

col = "blue", lwd = 2)
abline(h = confint(mod_4_kq, "log(cepii_area_o)", level = 0.95), lty = 2,

col = "blue", lwd = 2)
if (save.pdf) dev.off()

################################################################################
# Section 14.4 FGLS and heteroskedasticity-robust OLS estimation
################################################################################

#### FGLS estimation for model 4
mod_4_formula <- log(trade_0_d_o) ~ log(wdi_gdpusdcr_o) + log(cepii_dist) +

ebrd_tfes_o + log(cepii_area_o)
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# 1st step
resids <- residuals(mod_4_kq)
fits <- fitted(mod_4_kq)
mod_formula_ln_u_squared <- log(resids^2) ~ log(wdi_gdpusdcr_o) + log(cepii_dist)
+ ebrd_tfes_o + log(cepii_area_o)

# 2nd step
omega <- exp(fitted(lm(mod_formula_ln_u_squared)))
model_gls <- lm(mod_4_formula, weights=1/omega)
(summary(model_gls))

#### Regression output with heteroskedasticity-robust standard errors

library(lmtest)
# For choices for estimating the heteroskedastic variance-covariance matrix,
# see section 14.3
(coeftest(mod_4_kq,vcov=hccm(mod_4_kq,type="hc1")))

################################################################################
# Section 15.7
################################################################################

#### Perform the RESET test for model 4 with
resettest(mod_4_kq)

#### Performing the Breusch-Pagan test for model 4
bptest(mod_4_kq)

################################################################################
# Start function whitetest
################################################################################
# White test for homoskedastic errors with cross products
# RW, 2011_01_26

whitetest <- function(model){

# Extract data from model
dat <- model$model
dat$resid_sq <- model$resid^2

# Create formula for auxiliary regression
regr <- attr(model$terms, "term.labels")
form <- as.formula(paste("resid_sq~(",paste(regr,collapse="+"),")^2+",paste("I(",regr,"^2)",collapse="+")))

# Estimate auxiliary regression
test_eq <- lm(form,data=dat)

# Overall F-test
fstat <- summary(test_eq)$fstatistic

# Calculate and display result
result1 <- c(fstat[1],fstat[2],fstat[3],pf(fstat[1],fstat[2],fstat[3],lower.tail=FALSE))
names(result1) <- c("F-Statistic","df1","df2","P-Value")
result <- list(result1,test_eq)
return(result)

}

################################################################################
# End function whitetest
################################################################################

#### Performing the white test for model 4
whitetest(mod_4_kq)

########################## End main program #################################

Listing A.8: ./R_code/4_�_Beispiel_Handelsstroeme_eng.R
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A.5. R Program for Graphs in Section 7.1 The Geometry of the LS Estimator

A.5. R Program for Graphs in Section 7.1 The Geometry of the LS
Estimator

Geometry of the LS estimator, see figures 7.1 and 7.2 ˘ Derivation of the function
comp_d3 in the following R program for the calculation of the 3rd coordinate of the hyperplane
that is spanned by ”(X) in the case of k = 2 and n = 3:

The axes of the 3D graph are orthogonal to each other. According to the directions of the
axes, the three unit basis vectors ei, i = 1, 2, 3 are chosen (see leverage e�ect in section 7.2).
For these, therefore eT

i
ej = 0, i ”= j holds. For all vectors in the subspace ”(X)

Xa = d1e1 + d2e2 + d3e3 =

Q

ca
d1
d2
d3

R

db (A.1)

holds. To calculate the hyperplane of the subspace inE3, d1 and d2 can each be specified on
a grid, d1, d2 = 0, 0.25, 0.5, . . . , 10. The problem is now to determine d3 in such a way that
(A.1) is satisfied:

1. To do this, one first determines the (2 ◊ 1) vector a depending on d1, d2:
A

x11 x12
x21 x22

B

¸ ˚˙ ˝
:=XI

A
a1
a2

B

=
A

d1
d2

B

.

Multiplication by X≠1
I

(XI is quadratic here) yields

a = X≠1
I

A
d1
d2

B

.

2. Calculating d3 using the 3rd row of (A.1) yields:

d3 = X3a = X3X≠1
I

A
d1
d2

B

.

# ================== 7_1_Projektion_KQ_n3_eng.R ==================================
# Program for creating the graphs in the Methods of Econometrics script,
# Section 7.1 The Geometry of the OLS estimator
# created by: RT,KK,JS, 2010_11_24, 2015_09_30,
# 2022_12_20, RT (window() replaced by x11() )
#

# If library aplpack is not installed, this will be installed now.

if (!require(aplpack)){
install.packages("aplpack")

}
graphics.off() # Close all graphic windows

# Load the library aplpack which contains the functions for slider
library(aplpack)# Load the library aplpack
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# =================== Define functions ====================================

# ----------------------- comp_d3 -------------------------------------------
# Function "comp_d3" that calculates d_3 given d_1 and d_2 and X,

# cf. script Methods of Econometrics, section A.3
comp_d3 <- function(d,X) X[3,] %*% solve(X[1:2,]) %*% d
# ---------------------- End comp_d3 ---------------------------------------

# ----------------------- col_persp -------------------------------------------
# Function for colouring the surface
col_persp <- function(Z)

{
# Colors for surface = estimates
n_col <- dim(Z)
nrZ <- nrow(Z)
ncZ <- ncol(Z)
Zlim <- c(min(Z),max(Z))
couleurs <- heat.colors(trunc(1 * n_col))
# couleurs <- topo.colors(trunc(1 * n_col))
Zcol <- couleurs[trunc((Z-Zlim[1])/(Zlim[2]-Zlim[1])*(n_col-1))+1]
dim(Zcol) <- c(nrZ,ncZ)
return(Zcol <- Zcol[-nrZ,-ncZ])
}

# ---------------------- End col_persp ---------------------------------------
# ---------------------- beweglicher_plot -------------------------------------
# Define function "beweglicher_plot", which is called by the program "slider"
# and creates the surface/perspective graph.
# Note: the function uses variables from the main program without
# passing them explicitly
beweglicher_plot <- function(...) {

# Create perspective graph
persp(x=d1,y=d2,z=d3_mat, ticktype="detailed", col=d3_col,

r=slider(no=3), #5,
xlab = "e1", ylab = "e2", zlab = "e3",
theta=slider(no=1), #35,
phi=slider(no=2), #20,
expand=1) -> res #phi = 30

# x_1 vector
lines(trans3d(x=c(0,x1[1]), y=c(0,x1[1]), z=c(0,x1[3]), pmat=res),

col="black", lwd=2)
text(trans3d(x1[1], x1[2]+1, x1[3], pmat=res), expression(x[1]),cex=sym_gr)

# x_2 vector
lines(trans3d(x=c(0,x2[1]), y=c(0,x2[2]), z=c(0,x2[3]), pmat=res),

col="black", lwd=2)
text(trans3d(x2[1]-1, x2[2]-0.5, x2[3], pmat=res), expression(x[2]),cex=sym_gr)

# X beta vector
lines(trans3d(x=c(0,Xbeta[1]), y=c(0,Xbeta[2]), z=c(0,Xbeta[3]), pmat=res),

col="grey2", lwd=2)
text(trans3d(Xbeta[1]+1, Xbeta[2], Xbeta[3], pmat=res), expression(X*beta),

cex=sym_gr)

# shifted u vector
lines(trans3d(x=c(Xbeta[1],y[1]), y=c(Xbeta[2],y[2]), z=c(Xbeta[3],y[3]),

pmat=res), col="brown", lwd=2)

# y vector
lines(trans3d(x=c(0,y[1]), y=c(0,y[2]), z=c(0,y[3]), pmat=res),

col="red", lwd=2)
text(trans3d(y[1], y[2], y[3]+1, pmat=res), expression(y),cex=sym_gr)

# X hat beta vector
lines(trans3d(x=c(0,y_hat[1]), y=c(0,y_hat[2]), z=c(0,y_hat[3]), pmat=res),

col="purple", lwd=2)
text(trans3d(y_hat[1]+1, y_hat[2], y_hat[3], pmat=res), expression(X*hat(beta)),

cex=sym_gr )

# hat u vector
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A.5. R Program for Graphs in Section 7.1 The Geometry of the LS Estimator

lines(trans3d(x=c(0,y[1]-y_hat[1]), y=c(0,y[2]-y_hat[2]), z=c(0,y[3]-y_hat[3]),
pmat=res), col="green", lwd=2)

text(trans3d(y[1]-y_hat[1], y[2]-y_hat[2], y[3]-y_hat[3]+1, pmat=res),
expression(hat(u)),cex=sym_gr)

# shifted hat u vector
lines(trans3d(x=c(y[1],y_hat[1]), y=c(y[2],y_hat[2]), z=c(y[3],y_hat[3]),

pmat=res), col="green", lwd=2)
}
# ----------------------- End beweglicher_plot -------------------------------
# ========================= End functions ====================================

# ========================= Main program ======================================
# Defining parameters

# Specifying the parameters for the graph
sym_gr <- 1.5 # Symbol size
step <- .25 # step size for the grid over which X beta is calculated

# and plotted

# Specifying the three observations and the parameter vector beta
x1 <- c(1,1,1)
x2 <- 2*c(0.5,2,1.3)
beta <- c(5,-1)
u <- c(-3,4,5)

X <- cbind(x1,x2) # X = { x_1 x_2 }
Xbeta <- X%*%beta # X*beta
y <- Xbeta + u

# Calculating the OLS estimator and the fitted values
beta_hat<- solve(t(X) %*% X) %*% t(X) %*% y
y_hat <- X %*% beta_hat

# Calculating the 3D graph
d1_min <- min(Xbeta,0)
d1_max <- max(Xbeta,10)
d1 <- seq(d1_min,d1_max, by=step) # Grid points in first direction
d2 <- seq(d1_min,d1_max, by=step) # Grid points in second direction
d_grid <- expand.grid(d1,d2) #creating the grid over which subspace

# delta(X) is to be plotted
# Apply function "comp_d3" on grid of d_1 and d_2
# note: arguments passed in "apply" to the function are passed without "="

d3_grid <- apply(d_grid,1,comp_d3,X)
# "apply" outputs a vector, which is subsequently converted into a matrix
# so that d_3 matches the correct d_1 and d_2.

d3_mat <- matrix(d3_grid,length(d1),length(d2),byrow=FALSE)

# Colour hyperplane of subspace with function "col_persp", see above
d3_col <- col_persp(d3_mat)

# Create a scatterplot with regression line of the DGP and estimated
# regression line, errors and residuals for 2nd observation.
plot(x2,y,col="red",pch=16,xlab=expression(x[2]),ylab=expression(y)) # Scatterplot
abline(a=beta[1],b=beta[2],col="black") # Regression line of the DGP
points(x2,Xbeta,col="black",pch=16) # X beta on the regression line
abline(a=beta_hat[1],b=beta_hat[2],col="blue")# Estimated regression line
points(x2,y_hat,col="blue",pch=16) # hat y on the estimated regression line

# plotting the error vector and residual vector for 2. observation
t <- 2
lines(cbind(x2[t],x2[t]),cbind(Xbeta[t],y[t]),col="brown") # Error vector
text(x2[t]-.2,(y[t]-Xbeta[t])*0.75, expression(u[2]),cex=sym_gr)

lines(cbind(x2[t],x2[t]),cbind(y_hat[t],y[t]),col="green") # Residual vector
text(x2[t]-.2,y[t]-(y[t]-y_hat[t])*0.5, expression(hat(u)[2]),cex=sym_gr)
text(x2[t]-.4,y[t],expression((list(x[22],y[2]))),cex=sym_gr)

# Creating the 3D graph
# call slider with function beweglicher_plot to create and possibly rotate
# the 3D graph
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# windows() # opens a new graphic window
x11()
slider(beweglicher_plot,

sl.names = c("turn", "tilt", "distance"),
sl.mins = c(0, 0, 1), # minimum values for sliders
sl.maxs = c(360, 360, 100), # maximum values for sliders
sl.deltas = c(1, 1, 1), # step size for sliders
sl.defaults = c(35, 20, 5) # default values for parameters
, prompt = TRUE # ensures that the effect of a slider movement

# is seen immediately on the screen and not only
# after releasing the mouse button

)
# End slider
# ================ End main program =====================================

Listing A.9: ./R_code/7_1_Projection_KQ_n3_eng.R
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A.6. R Program for Regression Results in Section 8.3 on Qualitative Data as Regressors

A.6. R Program for Regression Results in Section 8.3 on Qualitative
Data as Regressors

# ===================== 8_4_Interpretationen_Wage_eng.R ===========================
# Program for wage regressions with dummies and interaction terms,
# see section 8.4 in script Methods of Econometrics
# Status: 2015_10_02
# Predecessor: app_interpretationen_wage.r from WS 2013/14

# Specification of the working directory
# in which the R program and the data are located

WD <- getwd() # set the directory of the R file and
setwd(WD) # set it as working directory

# Import the data
# The data file "wage1.txt" must be located in the same directory as the
# R file
wage_data <- read.table("wage1.txt", header = TRUE)
attach(wage_data)

# Wage regression with dummy variable, see section 8.4.1
wage_mod_1_kq <- lm(log(wage) ~ female +

educ + exper + I(exper^2) + tenure + I(tenure^2))
summary(wage_mod_1_kq)

# Relative difference of unconditional mean wages of women and men
(mean(wage[female==1])-mean(wage[female==0]))/mean(wage[female==0])

# alternative calculation possibility
wage_mean <- lm(wage~0+female+I(1-female))
(wage_mean$coef[1]-wage_mean$coef[2])/wage_mean$coef[2]

# Wage regression with multiple dummy variables: Interaction of dummies,
# see section 8.4.2

# Define dummy variables for subgroups
femmarr <- female * married
malesing <- (1 - female) * (1 - married)
malemarr <- (1 - female) * married

wage_mod_2_kq <- lm(log(wage) ~ femmarr + malesing + malemarr +
educ + exper + I(exper^2) + tenure + I(tenure^2))

summary(wage_mod_2_kq)

# Wage regression with a dummy and a dummy interaction term
wage_mod_3_kq <- lm(log(wage) ~ female +

educ + exper + I(exper^2) + tenure + I(tenure^2) +
I(female*educ))

summary(wage_mod_3_kq)

Listing A.10: ./R_code/8_4_Interpretationen_Wage_eng.R
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A.7. R Program for Graphs in Section 9.1 on Unbiasedness of the LS
Estimator

Monte-Carlo-Simulation zur Erwartungstreue, see figure 9.1
# ======================== 9_1_MC_KQ_einf_lin_Reg_eng.R ============================
#
# Program for Monte Carlo simulation
# to illustrate the unbiasedness of the OLS estimator
# in the simple linear regression model.
# In addition, the covariance between the estimated OLS parameters
# is illustrated with a scatterplot..
# created by : RT, 2010_11_25

graphics.off() # Close all graphic windows

# Set parameters of the model and the Monte Carlo simulation

set.seed(42) # Randomseed
n <- 50 # Sample size
R <- 1000 # Number of replications

beta_0 <- c(1,0.9) # Parameter vector
sigma_0 <- 2 # Standard deviation of the error

save.pdf <- 1 # 1=create PDFs of graphs, 0=otherwise

# Form a loop
beta_hat_store <- matrix(0,nrow=R,ncol=length(beta))

# Initialise matrix to store the OLS estimates
# for each realisation

for (r in (1:R))
{

# Generate a realisation of a simple linear regression model
u <- rnorm(n,mean=0,sd=sigma_0) # Draw u
x <- sample(1:20, n, replace=TRUE) # Draw x
y <- beta_0[1] + x * beta_0[2] + u # Calculate y

# Calculate the OLS estimator
ols <- lm(y~x)

# Save the parameter estimate
beta_hat_store[r,] <- coef(ols)

}

# Calculate the mean values of the parameter estimates
colMeans(beta_hat_store)

# Create histograms
if (save.pdf) pdf("plot_MC_KQ_einf_lin_Reg_hist.pdf", height=6, width=6)
par(mfrow=c(1,2)) # Display two plots in one graphic window
hist(beta_hat_store[,1],breaks=sqrt(R))
hist(beta_hat_store[,2],breaks=sqrt(R))
if (save.pdf) dev.off()

# Variance-covariance matrix of the estimators from the R realisations
(var(beta_hat_store))

# Asymptotic variance-covariance matrix
S_XX <- matrix(c(1,10.5,10.5,143.5),2,2)
cov_asymp <- sigma_0^2 * solve(S_XX)

# Adjustment to sample size
(cov_asymp / n)

# Scatterplot of the R OLS estimates
par(mfrow=c(1,1))
plot(beta_hat_store[,1],beta_hat_store[,2])
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# ========================= End ==============================================

Listing A.11: ./R_code/9_1_MC_KQ_einf_lin_Reg_eng.R
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A.8. R Program for Monte Carlo Simulation in the Section 9.2 on
Consistency of the LS Estimator

Monte Carlo simulation on consistency and the central limit theorem, see figures
9.2 und 9.3

# ======================== 9_2_MC_KQ_Konsistenz_einf_lin_Reg_eng.R =================
# Program for Monte Carlo simulation
# to illustrate the consistency and the asymptotic normal distribution
# of the OLS estimator in the simple linear regression model.
# Calculates mean and standard deviation of all replications
# and histograms.
# Note: Program is written with for loops for the sake of readability
# Status: RT, 2015_10_04

graphics.off() # Close all graphic windows

# Set parameters of the model and the Monte Carlo simulation

set.seed(42) # Randomseed
N <- c(50,100,500,1000,10000,100000) # Sample sizes
R <- 10000 # Number of replications

beta <- c(1,0.9) # Parameter vector
sigma <- 2 # Standard deviation of the error

save.pdf <- 1 # 1=create PDFs of graphs, 0=otherwise
# Form two loops:
# Outer loop on the number of replications
# Inner loop on the sample size

n_max <- N[length(N)] # Maximum sample size
# Initialise the output matrices
beta_1_hat_store <- matrix(0,nrow=R,ncol=length(N))

# Initialise matrix to store the OLS estimates
# for beta_1 each realisation and each sample size

beta_2_hat_store <- matrix(0,nrow=R,ncol=length(N))
# Initialise matrix to store the OLS estimates
# for beta_1 each realisation and each sample size

for (r in (1:R))
{

# Generate a realisation of a simple linear regression model
# for the maximum sample size
u <- rnorm(n_max,mean=0,sd=sigma) # Draw u
x <- sample(1:20, n_max, replace=TRUE) # Draw x
y <- beta[1] + x * beta[2] + u # Calculate y

for (i in (1:length(N)))
{

# Calculate the OLS estimator for all sample sizes

# ols <- lm(y[1:N[i]]~x[1:N[i]]) # Standard command for OLS estimation
# Fast lm command to save time in the simulation

ols <- lm.fit(cbind(rep(1,N[i]),x[1:N[i]]),y[1:N[i]])

# Save the parameter estimates
beta_1_hat_store[r,i] <- coef(ols)[1]
beta_2_hat_store[r,i] <- coef(ols)[2]
}

}

# Calculate the mean values of the parameter estimates
beta_1_hat_mean <- colMeans(beta_1_hat_store)
beta_2_hat_mean <- colMeans(beta_2_hat_store)
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A.8. R Program for Monte Carlo Simulation in the Section 9.2 on Consistency of the LS
Estimator

# Calculate the standard deviations of the parameter estimates
beta_1_hat_sd <- sqrt(diag(var(beta_1_hat_store)))
beta_2_hat_sd <- sqrt(diag(var(beta_2_hat_store)))

# Display on the screen
(cbind(N,beta_1_hat_mean,beta_1_hat_sd,beta_2_hat_mean,beta_2_hat_sd))

# Create histograms
if (save.pdf) pdf("plot_MC_KQ_Konsistenz_einf_lin_Reg1_eng.pdf", height=6, width=6)
par(mfrow=c(2,2)) # Display four plots in a graphic window
for (i in (1:2))
{

# Sample size N[i]
hist(beta_1_hat_store[,i], breaks=sqrt(R),

xlab=expression(hat(beta)[1]), main=paste("Histogram for n= ",N[i],sep=""))
hist(beta_2_hat_store[,i], breaks=sqrt(R),

xlab=expression(hat(beta)[2]), main=paste("Histogram for n= ",N[i],sep=""))
}
if (save.pdf) dev.off()

if (save.pdf) pdf("plot_MC_KQ_Konsistenz_einf_lin_Reg2_eng.pdf", height=6, width=6)
par(mfrow=c(2,2)) # Display four plots in a graphic window
for (i in (3:4))
{

# Sample size N[i]
hist(beta_1_hat_store[,i], breaks=sqrt(R),

xlab=expression(hat(beta)[1]), main=paste("Histogram for n= ",N[i],sep=""))
hist(beta_2_hat_store[,i], breaks=sqrt(R),

xlab=expression(hat(beta)[2]), main=paste("Histogram for n= ",N[i],sep=""))
}
if (save.pdf) dev.off()

if (save.pdf) pdf("plot_MC_KQ_Konsistenz_einf_lin_Reg3_eng.pdf", height=6, width=6)
par(mfrow=c(2,2)) # Display four plots in a graphic window
for (i in (5:6))
{

# Sample size N[i]
hist(beta_1_hat_store[,i], breaks=sqrt(R),

xlab=expression(hat(beta)[1]), main=paste("Histogram for n= ",N[i],sep=""))
hist(beta_2_hat_store[,i], breaks=sqrt(R),

xlab=expression(hat(beta)[2]), main=paste("Histogram for n= ",N[i],sep=""))
}
if (save.pdf) dev.off()
# ========================= End ==============================================

Listing A.12: ./R_code/9_2_MC_KQ_Konsistenz_einf_lin_Reg_eng.R
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A.9. R Program for the Representation of ifo Business Climate Time
Series in the Section 12 on Univariate Time Series Models

# ======================== 12_0_ifo_Geschaeftsklima_1991-2023_eng.R ===========================
#
# generates graphs of the time series on ifo business outlook,
# the ifo business situation and the ifo business climate
# Note: Previous data only referred to the commercial economy
# Current data from: https://www.ifo.de/node/67013
# last change: 2023_02_01, RT

save.pdf <- 0 # 1=create PDFs of graphs, 0=otherwise

# If these are not installed, they are installed first:
if (!require(dynlm)){

install.packages("dynlm")
}
if (!require(readxl)) {

install.packages("readxl")
}

# Set the working directory
# The easiest way is via RStudio

# Read in the data

# with package "readxl", which does not require Java.
# However, it returns a "tibble" instead of a "dataframe", so that
# the "data.frame" command is also required to convert a tibble
# into a dataframe
library(readxl)
library(dynlm)
excel_daten <- data.frame(read_excel(path="ifo_geschaeftsklima_1991_01-2023_01_gsk-d-202301.xlsx",

sheet = 2, range = "B10:D394", col_names=FALSE))
# Note that data from 1991 onwards are only available for the
# Gewerbliche Wirtschaft on sheet 2

# Create a time series object with dataframe properties
daten <- zoo( ts((excel_daten),

start = c(1991, 1), end = c(2023,01), frequency = 12,
names = c("Business_climate", "Business_situation",

"Business_outlook")) )

head(daten)

# Plot time series
if (save.pdf) pdf("ifo_geschaeftsklima_1991_01-2023_01_eng.pdf", height=6,width=6)
plot(daten, xlab="Time", main="ifo business data (commercial)")
if (save.pdf) dev.off()

# Create scatterplot for business outlook
n <- nrow(daten)
if (save.pdf) pdf("ifo_geschaeftsklima_scatter_1991_01-2023_01_eng.pdf",

height=6, width=6)
plot(Business_outlook[2:n] ~ Business_outlook[1:(n-1)], data=daten)
if (save.pdf) dev.off()

# Estimate AR(1) model for business climate and business outlook
gk_ols <- lm(Business_climate[2:n] ~ Business_climate[1:(n-1)],data=daten)
summary(gk_ols)

ge_ols <- lm(Business_outlook[2:n] ~ Business_outlook[1:(n-1)],
data=daten)

summary(ge_ols)

# alternatively with dynlm package (allows lag notation as in EViews)
# simplified regression with time series

gk_dynlm <- dynlm(Business_climate ~ L(Business_climate),data=daten)
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A.10. R Program for the Representation of di�erent Realisations of Time Series in Section
12.1 on Stochastic Processes

summary(gk_dynlm)
# ========================= End ==============================================

Listing A.13: ./R_code/12_0_ifo_Geschaeftsklima_1991–2023_eng.R

A.10. R Program for the Representation of di�erent Realisations of
Time Series in Section 12.1 on Stochastic Processes

# ======================== 12_1_Traj_RW_eng.R =====================================
#
# generates a graph with ten realisations of a random walk with or without drift
# and plots the time series
# last change: 2015_10_10, RT, 2022_02_02, RT (also with drift)

save.pdf <- 0 # 1=create PDFs of graphs, 0=otherwise

# Parameters of the DGP and the MC
n <- 20 # Length of the time series

alpha <- 1 # AR parameters of AR(1) process with mean value 0
# 0: Gaussian white noise
# 1: Random walk
# 0 < |alpha| < 1: stationary process

nu <- 0.5 # allows to draw random walks with drift nu * t
# added RT 2022_02_02

R <- 10 # number of trajectories

var_z <- 0 # Variance of z to illustrate ergodicity:
# 0 => ergodic
# >0 => not ergodic

# Parameters for plots
lwd <- 3
cexmu <- 2

set.seed(42) # seed value

# Initialisation of the output matrices
y <- matrix(nu + rnorm(n*R), n) # Initialisation of the time series vectors with

# standard-normally distributed error process (Gaussian
# white noise)
# here nu added to allow for drift using filter command, 2022_02_02

z <- rnorm(R) * var_z # draw a random number that is the same for all t

# Generate all R trajectories of the AR(1) process

for (i in 1:R) y[,i] <- filter(y[,i], alpha, method="recursive")

# Plotting the time series - Displaying ensemble
if (save.pdf) pdf("Traj_RW_points_eng.pdf")

# First trajectory
plot(y[,1]+z[1], cex.lab=cexmu, cex.axis=cexmu, lwd=lwd, ylim=c(min(y+min(z)),

max(y)+max(z)), ylab=expression(y[t]), xlab="t")
# 2nd to Rth trajectory

for (i in 2:R) points(y[,i]+z[i], col=i, lwd=lwd)
dev.off()

# Plotting the time series - displaying trajectories
if (save.pdf) pdf("Traj_RW_lines_eng.pdf")

# First trajectory
plot(y[,1], cex.lab=cexmu, cex.axis=cexmu, lwd=lwd, type="l", ylim=c(min(y),

max(y)), ylab=expression(x[t]), xlab="t")
# 2nd to Rth trajectory

for (i in 2:R) lines(y[,i], col=i, lwd=lwd)
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dev.off()
# ========================= End ==============================================

Listing A.14: ./R_code/12_1_Traj_RW_eng.R

A.11. R Program for Monte Carlo Simulation in Section 12.2 on Linear
Stochastic Processes and MA Processes

# ==========================12_2_MA2_Realisation_eng ===============================
# Program for creating a realisation of a MA(2) process
# created by: RT, 2015_09_11

# Define the sample size and the parameters of a MA(2) process
n <- 100 # Sample size
sigma <- 2 # Standard deviation of the white noise
psi <- c(1, 0.8, 0.6) # MA parameters for y_t = u_t + 0.8 u_{t-1} + 0.6 u_{t-2}
set.seed(1) # Set seed value for random generator

save.pdf <- 1 # 1=create PDFs of graphs, 0=otherwise

# Generate a realisation
u <- rnorm(n + length(psi) - 1, sd = sigma)

# Generate white noise
# Generate a realisation of a MA(2) process

y <- filter(u, filter = psi, sides = 1, method = "convolution")

if (save.pdf) pdf("MA2_Realisation_eng.pdf", height=6, width=6)
plot(y, xlab = "Time", ylab = expression(y[t]))

# Plotting a MA(2) time series
if (save.pdf) dev.off()

# Calculate the theoretical autocorrelation function for k=0,1,...,10
ARMAacf(ma=psi[2:3],lag.max=10)
# =============================== End =========================================

Listing A.15: ./R_code/12_2_MA2_Realisation_eng.R

A.12. R Program for Monte Carlo Simulation in Section 12.3.1 on AR(1)
Processes

# ====================== 12_3_AR1_Realisierung_eng.R ===============================
# Program for creating a realisation of an AR(1) process
# created by: RT, 2015_10_10

# AR(1) parameters of the DGP
nu <- 1
alpha_1 <- 0.8
sigma2 <- 4
y_0 <- 0

# Length of the time series
n <- 500

set.seed(15) # Set seed value
u <- rnorm(n,sd=sqrt(sigma2)) # Generate Gaussian White Noise
y <- rep(y_0,n) # Initialise output vector
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A.13. R Program for Monte Carlo Simulation in Section 12.3.3 on AR(p) Processes and more

save.pdf <- 0 # 1=create PDFs of graphs, 0=otherwise
# Set the working directory
# in which the R program and the data are located
WD <- getwd() # Determine the directory of the R file and
setwd(WD) # set it as working directory

# Generate AR(1) realisation
for (i in (2:n))
{

y[i] <- nu + alpha_1 * y[i-1] + u[i]
}
# Plot realisation
if (save.pdf) pdf("AR1_Realisierung_eng.pdf", height=6, width=6)
plot(seq(1:n),y,xlab="Time",ylab=expression(y[t]),type="l")
if (save.pdf) dev.off()

Listing A.16: ./R_code/12_3_AR1_Realisierung_eng.R

A.13. R Program for Monte Carlo Simulation in Section 12.3.3 on AR(p)
Processes and more

Realisation, ACF, MA paramter, PACF of an AR(2) Process, see figure 12.7
# ========================= 12_3_AR2_Realisierung_eng.R ===========================
# Program for creating a realisation of an AR(2) process
# and for calculating the ACF, the MA representation and the roots
# created by: RT, 2015_29_09

# AR(2) parameters of the DGP

alpha_0 <- 1
alpha <- c(-0.5,-0.8)
sigma2 <- 4

# Start values
y_start <- c(0,0)

# Length of the time series
n <- 500

save.pdf <- 1 # 1=create PDFs of graphs, 0=otherwise
# Set the working directory
# in which the R program and the data are located
WD <- getwd() # Determine the directory of the R file and
setwd(WD) # set it as working directory

# Check stability of the AR(2) polynomial
AR2_wurzeln <- polyroot(c(1,-alpha))
abs(AR2_wurzeln)

set.seed(15) # Set seed value
u <- rnorm(n,sd=sqrt(sigma2)) # Generate Gaussian White Noise
y <- rep(NA,n) # Initialise output vector
y[1:length(y_start)] <- y_start # Plug in start values

# Generate AR(2) realisation
for (i in ((length(alpha)+1):n))
{

y[i] <- alpha_0 + alpha %*% y[(i-1):(i-2)] + u[i]
}
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# Generate plots
if (save.pdf) pdf("AR2_Realisierung_eng.pdf", height=6, width=6)
split.screen(c(2,2))

# Plot realisation
screen(1)
plot(seq(1:n),y,xlab="Zeit",ylab=expression(y[t]),type="l")

# Plot theoretical ACF
screen(2)
plot(ARMAacf(ar=alpha,lag.max=20),type="h",ylab="ACF",xlab="Lags")

# Plot theoretical PACF
screen(3)
plot(ARMAacf(ar=alpha,lag.max=20,pacf=TRUE),type="h",ylab="PACF",xlab="Lags")

# Plot MA parameters of the inverted AR(2) process
screen(4)
plot((1:20),ARMAtoMA(ar=alpha,lag.max=20),type="h",ylab="MA parameters",xlab="Lags")
if (save.pdf) dev.off()

if (save.pdf) pdf("AR2_Realisierung_ACF_eng.pdf", height=6, width=6)
acf(y,lag.max=20,type="correlation")
if (save.pdf) dev.off()
# ========================= End ==============================================

Listing A.17: ./R_code/12_3_AR2_Realisierung_eng.R

A.14. R Program for Estimating the Autocorrelation Function in Section
12.4 on Estimating First and Second Moments in the Case of
Stationary Processes

Estimated autocorrelation function of a white noise realisation, see figure 12.9
# ============================== 12_4_WN_ACF_Est_eng ==============================
# Program for estimating the autocorrelation function of a realisation of a
# Gaussian white noise process with n=100 observations
# created by: RT, 2015_18_10

# Variance
sigma2 <- 4
# Length of the time series
n <- 100
save.pdf <- 1 # 1=create PDFs of graphs, 0=otherwise

# Set seed value
set.seed(15)
# Generate Gaussian white noise
y <- rnorm(n,sd=sqrt(sigma2))

# Plot the estimated autocorrelation function
# with 95\% confidence intervals
if (save.pdf) pdf("ACF_WN_Est_eng.pdf", height=6, width=6)
acf(y,lag.max=20,type="correlation")
if (save.pdf) dev.off()

Listing A.18: ./R_code/12_4_WN_ACF_Est_eng.R
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A.15. R Program for the Simulation and Estimation of AR(1) Processes in Section 13.5 on
LS Estimation of Dynamic Linear Regression Models

A.15. R Program for the Simulation and Estimation of AR(1) Processes
in Section 13.5 on LS Estimation of Dynamic Linear Regression
Models

Generation and estimation of a process
# =============================== 13_5_KQ_AR1_eng.R ====================================
# Program for generating and OLS estimation of an AR(1) model
# created by : RT, 2011_01_19

graphics.off() # Close all graphic windows

# Set parameters of the model and the Monte Carlo simulation
set.seed(42) # Randomseed
N <- 50 # Sample size

beta <- c(2,0.1) # Parameter vector
sigma <- 2 # Standard deviation of the error
y0 <- 0 # Start value of the AR(1) process

# Generate a realisation of an AR(1) process
u <- rnorm(N,mean=0,sd=sigma) # Draw u
y <- rep(1,N)*y0
for (t in (2:N))
{

y[t] <- beta[1] + y[t-1] * beta[2] + u[t] # Calculate y_t
}

# Plot of the time series
plot(y,xlab="Time",ylab="y",type="l")

# Scatterplot
plot(y[1:(N-1)],y[2:N])

# Calculate the OLS estimator
ols <- lm(y[2:N]~1+y[1:(N-1)]) # Note x=y_{t-1]. Therefore y_t of t=2,...,N
summary(ols)
# =============================== End ========================================

Listing A.19: ./R_code/13_5_KQ_AR1_eng.R

Monte Carlo simulation
# ======================== 13_5_MC_KQ_AR1_eng.R ==================================
# Program for Monte Carlo simulation
# to determine the bias of the OLS estimator in the AR(1) model
# created by : RT, 2010_11_25

graphics.off() # Close all graphic windows

# Set parameters of the model and the Monte Carlo simulation

set.seed(42) # Randomseed
N <- 50 # Sample size
R <- 1000 # Number of replications

beta <- c(1,0.9) # Parameter vector
sigma <- 2 # Standard deviation of the error
y0 <- 1 # Start value of the AR(1) process

# Forming a loop
beta_hat_store <- matrix(0,nrow=R,ncol=length(beta))

# Initialise matrix to store the OLS estimates
# for each realisation
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for (r in (1:R))
{

# Generate a realisation of an AR(1) process
u <- rnorm(N,mean=0,sd=sigma) # Draw u
y <- rep(1,N)*y0
for (t in (2:N))
{

y[t] <- beta[1] + y[t-1] * beta[2] + u[t] # Calculate y_t
}
# Calculate the OLS estimator
ols <- lm(y[2:N]~y[1:(N-1)]) # Note x=y_{t-1]. Therefore y_t of t=2,...,N

# Store the parameter estimates
beta_hat_store[r,] <- coef(ols)

}

# Calculate the mean values of the parameter estimates

colMeans(beta_hat_store)

# Create histograms
par(mfrow=c(1,2)) # Draw two plots in a graphic window

hist(beta_hat_store[,1],breaks=sqrt(R))
hist(beta_hat_store[,2],breaks=sqrt(R))

# ========================= End ==================================

Listing A.20: ./R_code/13_5_MC_KQ_AR1_eng.R
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B. R Commands for Regression Analysis

B.1. Overview of Available Commands

Required R packages: stats usually loaded, car, lmtest, moments, sandwich.

Performing a lineaer regression:
model_kq <- lm()

creates a regression object that is the basis for the following commands:
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B.1. Overview of Available Commands
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Commands for graphs/plots:
# INFORMATION FOR GRAPHS

# save as .eps file (file name, size of the graphic)
# postscript("pdf_std_normal.eps", height=4, width=6, horizontal=FALSE)
# or save as .pdf
# pdf("pdf_std_normal.pdf", height=4, width=6)
# windows() # opens a new graphic window

# split.screen(c(2,1)) # splits a graphic window
# screen(1) # selects window 1
# dev.off() # closes open graphic window
# close.screen(all=TRUE)# closes all windows

# Parameters for graphics: (optional)
# las=1: Axis scaling horizontal
# mai: width of margins (bottom, left, top, right)
# mgp: Position of axes, axis scaling and axis labelling

B.2. Own R Packages

# --------------- SelectCritEViews --------------------------------------------------
# function to compute model selection criteria for linear regressions as EViews
# RT, 2011_01_26

SelectCritEViews <- function(model)
{
n <- length(model$residuals)
k <- length(model$coefficients)
fitmeasure <- -2*logLik(model)/n

aic <- fitmeasure + k * 2/n
hq <- fitmeasure + k * 2*log(log(n))/n
sc <- fitmeasure + k * log(n)/n
sellist <- list(aic=aic[1],hq=hq[1],sc=sc[1])

return(sellist)
}

# -----------------------------------------------------------------------------

# --------------- whitetest --------------------------------------------------
# function to conduct White test including cross terms
# RW, 2011_01_26

whitetest <- function(model){

# Extract data from model
dat <- model$model
dat$resid_sq <- model$resid^2

# Create formula for auxiliary regression
regr <- attr(model$terms, "term.labels")
form <- as.formula(paste("resid_sq~(",paste(regr,collapse="+"),")^2+",

paste("I(",regr,"^2)",collapse="+")))

# Estimate auxiliary regression
test_eq <- lm(form,data=dat)

# Overall F-test
fstat <- summary(test_eq)$fstatistic

# Calculate and display result
result1 <- c(fstat[1],fstat[2],fstat[3],pf(fstat[1],fstat[2],
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fstat[3],lower.tail=FALSE))
names(result1) <- c("F-Statistic","df1","df2","P-Value")
result <- list(result1,test_eq)
return(result)
}
# -----------------------------------------------------------------------------

More:

• Course Programming with R

• Kleiber & Zeileis (2008)

• Overview of available packages in R

http://cran.r-project.org/web/views/
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C. Data for Estimation of the Gravity Equation

Section corresponds to section 10.4 in course material on Introduction to Econometrics.

Legend for the data in importe_ger_2004_ebrd.txt

• Countries and country codes

1 ALB Albania 26 ISL Iceland
2 ARM Armenia 27 ITA Italy
3 AUT Austria 28 JPN Japan
4 AZE Azerbaijan 29 KAZ Kazakhstan
5 BEL Belgium and Luxembourg 30 KGZ Kyrgyzstan
6 BGR Bulgaria 31 LTU Lithuania
7 BIH Bosnia and Herzegovina 32 LVA Latvia
8 BLR Belarus 33 MDA Republic of Moldova
9 CAN Canada 34 MKD FYR Macedonia

10 CHE Switzerland 35 MLT Malta
11 CYP Cyprus 36 NLD Netherlands
12 CZE Czech Republic 37 NOR Norway
13 DNK Denmark 38 POL Poland
14 ESP Spain 39 PRT Portugal
15 EST Estonia 40 ROM Romania
16 FIN Finland 41 RUS Russia
17 FRA France 42 SVK Slovakia
18 GBR United Kingdom 43 SVN Slovenia
19 GEO Georgia 44 SWE Sweden
20 GER Germany 45 TJK Tajikistan
21 GRC Greece 46 TKM Turkmenistan
22 HKG Hong Kong 47 TUR Turkey
23 HRV Croatia 48 UKR Ukraine
24 HUN Hungary 49 USA United States
25 IRL Ireland 50 UZB Uzbekistan

Countries that only appear as countries of origin:

BIH Bosnia und Herzegovina CHN China KOR South Korea
TJK Tajikistan HKG Hong Kong TWN Taiwan
UZB Uzbekistan JPN Japan THA Thailand

R code:
setwd(’d:/..’) # set working directory
daten <- read.table("importe_ger_2004_ebrd.txt", header=TRUE, sep="\t")

https://www.uni-regensburg.de/wirtschaftswissenschaften/vwl-tschernig/lehre/bachelor/einfuehrung-in-die-oekonometrie/index.html
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attach(daten)
cbind(matrix(iso_o,50,1),matrix(d_o,50,1)) # Abbreviations of country names

# and trade directions

• Endogenous variable:

– TRADE_0_D_O: Imports of country D from country O (i.e. exports of country O to
country D) in current US dollars.

– Product classes: Trade flows are based on the aggregation of trade flows recorded
according to the Standard International Trade Classification, Revision 3 (SITC, Rev.3)
at the lowest level of aggregation (4 or 5 digits). Source: UN COMTRADE

– Fuels and lubricants are not included (i.e. specifically fuel and natural gas products).
Minimum limit of the underlying split trade flows (at the SITC Rev.3 5-digit level) is
500 US dollars.
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• Explanatory variables:

Country of origin (O-country)

WDI_GDPUSDCR_O country of origin GDP data; in current US dollars World Bank - World Development Indicators
WDI_GDPPCUSDCR_O country of origin GDP per capita data; in current US dollars World Bank - World Development Indicators
WEO_GDPCR_O country of destination and origin GDP data; in current US dollars IMF - World Economic Outlook database
WEO_GDPPCCR_O country of destination and origin GDP per capita data; in current US dollars IMF - World Economic Outlook database
WEO_POP_O country of origin population data IMF - World Economic Outlook database
CEPII_AREA_O area of country of origin in km2 CEPII
CEPII_COL45 dummy; d- and o-country had a colonial relationship after 1945 CEPII
CEPII_COL45_REV dummy; revised by “expert knowledge”
CEPII_COLONY dummy; d- and o-country ever had a colonial relationship CEPII
CEPII_COMCOL dummy; d- and o-country share a common colonial master after 1945 CEPII
CEPII_COMCOL_REV dummy; revised by “expert knowledge”
CEPII_COMLANG_ETHNO dummy; d- and o-country share a common language CEPII
CEPII_COMLANG_ETHNO_REV spoken by at least 9% of the population
CEPII_COMLANG_OFF dummy; d- and o-country share common o�cial language CEPII
CEPII_CONTIG dummy; d- and o-country are neighbouring states CEPII
CEPII_DISINT_O domestic distance in country of origin CEPII
CEPII_DIST geodetic distance between d- and o-country CEPII
CEPII_DISTCAP distance between d- and o-country based on their capitals

0.67


F läche/fi

CEPII

CEPII_DISTW weighted distances, see CEPII for details CEPII
CEPII_DISTWCES weighted distances, see CEPII for details CEPII
CEPII_LAT_O latitude of the city CEPII
CEPII_LON_O longitude of the city CEPII
CEPII_SMCTRY_REV dummy; d- and o-country were/are the same country CEPII, revised
ISO_O three-letter ISO code for country of origin CEPII
EBRD_TFES_O EBRD measure of the degree of liberalisation of the trade and payment

flows of the o-country
EBRD

Country of destination (D-country)

WDI_GDPUSDCR_D country of destination GDP data; in current US dollars World Bank - World Development Indicators
WDI_GDPPCUSDCR_D country of destination GDP per capita data; in current US dollars World Bank - World Development Indicators
WEO_GDPCR_D country of destination and origin GDP data; in current US dollars IMF - World Economic Outlook database
WEO_GDPPCCR_D country of destination and origin GDP per capita data; in current US dollars IMF - World Economic Outlook database
WEO_POP_D country of destination population data IMF - World Economic Outlook database
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Notes: The EBRD measures reform e�orts on a scale of 1 to 4+ (=4.33); 1 indicates no or
marginal progress; 2 indicates important progress; 3 indicates substantial progress; 4

indicates extensive progress, while 4+ means that the country has reached the standard
and performance norms of advanced industrialised countries, i.e., OECD countries. This

variable is by construction qualitative and not cardinal.

• Thanks: to Richard Frensch, Institute for Eastern Europe, Regensburg, who provided the
data.

• Websites CEPII
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D. Basic concepts of sets

Definition
Fischer (cf. 2014, p. 43) A set G together with an operation ú is called group if the
following axioms are fulfilled:

1. Associative property: (a ú b) ú c = a ú (b ú c) for all a, b, c œ G

2. Existence of a neutral element e œ G with the following properties:

a) e ú a = a for all a œ G.

b) Existence of an inverse element: For each a œ G there is an aÕ œ G with aÕ ú a = e.

The group is called abelian or commutative if, in addition a ú b = b ú a for all a, b œ G.

Definition
Fischer (cf. 2014, p. 54) A set R together with two operations

+ :R ◊ R æ R, (a, b) æ a + b, and
· :R ◊ R æ R, (a, b) æ a · b,

is called ring if the following applies:

1. R together with the addition + is an abelian group (= commutative group).

2. The multiplication · is associative.

3. The distributive properties hold, i.e. for all a, b, c œ R it holds that

a · (b + c) = a · b + a · c and (a + b) · c = a · c + b · c.

Definition
Fischer (cf. 2014, p. 56) A set K together with two operations

+ :R ◊ R æ R, (a, b) æ a + b, and
· :R ◊ R æ R, (a, b) æ a · b,

is called field if the following applies:

1. K together with the addition + is an abelian group.
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2. Existence of a subset for which the multiplication is also an abelian group: If Kú := K\0,
then for a, b œ Kú it also holds that a · b œ Kú, and Kú together with the multiplication
thus obtained is an abelian group.

3. The distributive properties hold, i.e. for all a, b, c œ K it holds that

a · (b + c) = a · b + a · c and (a + b) · c = a · c + b · c.

368



Bibliography

Anderson, J. E. & Wincoop, E. v. (2003), ‘Gravity with gravitas: A solution to the border
puzzle’, The American Economic Review 93, 170–192. 147

Angrist, J. & Pischke, J. (2009), Mostly harmless econometrics. An Empiricist’s Companion,
Princeton University Press.

Bauwens, L., Boswijk, H. P. & Urbain, J.-P. (2006), ‘Causality and exogeneity in econometrics’,
Journal of Econometrics 132, 305 – 309. 298

Brockwell, P. J. & Davis, R. A. (1991), Time Series: Theory and Methods, 2. edn, Springer,
New York, NY. 263, 281, 282, 284, 285

Cameron, A. & Trivedi, P. (2005), Microeconometrics, Cambridge University Press.

Casella, G. & Berger, R. L. (2002), Statistical Inference, 2nd edn, Duxbury - Thomson. 38,
70, 83

Davidson, J. (1994), Stochastic Limit Theory, Oxford University Press. 119, 123

Davidson, J. (2000), Econometric Theory, Blackwell Publishers. 71, 82, 100, 120, 215, 223,
255, 283, 287, 288, 290, 291, 294, 295, 299, 302, 303

Davidson, R. & MacKinnon, J. (1993), Estimation and Inference in Econometrics., Oxford
University Press.
URL: http://www.oup.com/uk/catalogue/?ci=9780195060119

Davidson, R. & MacKinnon, J. G. (2004), Econometric Theory and Methods, Oxford University
Press, Oxford. 26, 38, 55, 99, 101, 103, 104, 107, 109, 114, 123, 137, 138, 143, 148, 160, 162,
163, 164, 165, 166, 167, 191, 207, 211, 212, 237, 239, 240, 241, 243, 311, 312, 320, 360

Engle, R., Hendry, D. & Richard, J.-F. (1983), ‘Exogeneity’, Econometrica 51, 277–304. 291,
293

Fahrmeier, L., Künstler, R., Pigeot, I. & Tutz, G. (2004), Statistik, Spinger. 39

Fahrmeir, L., Heumann, C., Künstler, R., Pigeot, I. & Tutz, G. (2016), Statistik: Der Weg zur

Datenanalyse, 8 edn, Springer. 38

Fischer, G. (2010), Lineare Algebra, 17 edn, Vieweg + Teubner. 6, 26

Fischer, G. (2014), Lineare Algebra, 18 edn, Springer Spektrum.
URL: http://dx.doi.org/10.1007/978-3-658-03945-5 3, 367



Bibliography

Fratianni, M. (2007), The gravity equation in international trade, Technical report, Diparti-
mento di Economia, Universita Politecnica delle Marche. 147

Gentle, J. E. (2007), Matrix Algebra. Theory, Computations, and Applications in Statistics,
Springer Texts in Statistics, Springer.
URL: http://www.springerlink.com/content/x4rj03/ 3, 8, 10, 11, 26, 306

Granger, C. (1969), ‘Investigating causal relations by econometric models and cross-spectral
methods’, Econometrica 37, 424 – 438. 294

Greene, W. (2008), Econometric Analysis, 6 edn, Pearson.
URL: http://www.pearsonhighered.com/educator/academic/product/0,3110,0135132452,00.html

165

Greene, W. (2012), Econometric Analysis, 7 edn, Pearson.

Hamilton, J. D. (1994), Time Series Analysis, Princeton University Press. 263, 272, 276

Hansen, B. E. (2015), Econometrics.

Hassler, U. (2007), Stochastische Integration und Zeitreihenmodellierung, Springer, Berlin,
Heidelberg. 255, 256

Hayashi, F. (2000), Econometrics, Princeton University Press, Princeton, NJ [u.a.]. 261, 262

Hendry, D. F. (1995), Dynamic Econometrics, Oxford University Press. 123, 294, 295, 299

Horowitz, J. (2001), The bootstrap, in J. Heckman & E. Leamer, eds, ‘Handbook of Econo-
metrics’, Vol. 5, North-Holland. 240

Horowitz, J. (2003), ‘The boothstrap in econometrics’, Statistical Science 18, 211–218. 240

Kirchgässner, G. & Wolters, J. (2008), Introduction To Modern Time Series Analysis, Springer,
Berlin, [u.a.]. 276

Kirchgässner, G., Wolters, J. & Hassler, U. (2013), Introduction To Modern Time Series

Analysis, 2nd. ed. edn, Springer, Berlin, [u.a.]. 263

Kleiber, C. & Zeileis, A. (2008), Applied Econometrics with R, Springer. 362

Li, Q. & Racine, J. (2007), Nonparametric Econometrics, Princeton University Press. 104

Lucas, R. (1976), Econometric policy evaluation: A critique, in K. Brunner & A. Meltzer, eds,
‘The Phillips Curve and Labor Markets’, Vol. Vol. 1 of Carnegie-Rochester Conferences on

Public Policy, North-Holland, Amsterdam, pp. 19 – 46. 299

Lütkepohl, H. (1996), Handbook of Matrices, John Wiley & Sons, Chichester. 3, 284, 306

Lütkepohl, H. (2004), Vector autoregressive and vector error correction models, in H. Lütkepohl
& M. Krätzig, eds, ‘Applied Time Series Econometrics’, Cambridge University Press,
Cambridge, chapter 3, pp. 86–158. 294

370



Bibliography

Lütkepohl, H. & Kraetzig, M. (2008), Applied Time Series Econometrics, Cambridge University
Press. 263

Mikosch, T. (1998), Elementary Stochastic Calculus, World Scientific Publishing, Singapore.
255

Neusser, K. (2006), Zeitreihenanalyse in den Wirtschaftswissenschaften, Teubner, Wiesbaden.
263, 264

Neusser, K. (2009), Zeitreihenanalyse in den Wirtschaftswissenschaften, 2. edn, Teubner,
Wiesbaden. 263, 272, 273, 274

Peracchi, F. (2001), Econometrics, John Wiley and Sons.
URL: http://www.wiley-vch.de/publish/dt/books/bySubjectEC00/ISBN0-471-98764-

6/?sID=he2l84vhvc6o6e4f1mc7i17k05

Robinson, P. M., ed. (2003), Time Series with Long Memory, Oxford University Press. 279

Ruud, P. (2000), An Introduction to Classical Econometric Theory, Oxford University Press.
URL: http://www.oup.com/uk/catalogue/?ci=9780195111644 167

Schmidt, K. & Trenkler, G. (2006), Einführung in die Moderne Matrix-Algebra. Mit Anwen-

dungen in der Statistik, Springer. 24, 25, 26, 29, 226

Schmidt, K. & Trenkler, G. (2015), Einführung in die Moderne Matrix-Algebra. Mit Anwen-

dungen in der Statistik, 3 edn, Springer. 3

Steland, A. (2010), Basiswissen Statistik : Kompaktkurs für Anwender aus Wirtschaft, Infor-

matik und Technik, 2., komplett überarb. und erw. aufl. edn, Spinger, Berlin ; Heidelberg :
Springer. 45

Steland, A. (2013), Basiswissen Statistik : Kompaktkurs für Anwender aus Wirtschaft, Infor-

matik und Technik, 3., überarb. und erw. aufl. edn, Spinger, Berlin ; Heidelberg : Springer.
URL: http://link.springer.com/book/10.1007/978-3-642-37201-8 38

Steland, A. (2016), Basiswissen Statistik : Kompaktkurs für Anwender aus Wirtschaft, Infor-

matik und Technik, 4 edn, Spinger, Berlin ; Heidelberg : Springer.
URL: http://link.springer.com/book/10.1007/978-3-642-37201-8

Stock, J. H. & Watson, M. W. (2007), Introduction to Econometrics, 2nd. edn, Pearson,
Boston, Mass. 86, 87, 95

Stock, J. H. & Watson, M. W. (2012), Introduction to Econometrics, 3rd. edn, Pearson, Boston,
Mass.

Tschernig, R. (1994), Wechselkurse, Unsicherheit und Long Memory, Physica-Verlag, Heidel-
berg.
URL: http://epub.uni-regensburg.de/6928/ 279

Vaart, A. v. d. (1998), Asymptotic Statistics, Cambridge series in statistical and probabilistic
mathematics, Cambridge University Press. 81

371



Bibliography

Verbeek, M. (2012), A guide to modern econometrics, Wiley, Chichester.

Wooldridge, J. M. (2009), Introductory Econometrics. A Modern Approach, 4th edn, Thomson
South-Western, Mason. 60, 63, 64, 107, 131, 134, 137, 138, 159, 165, 174, 175, 185, 188,
189, 190, 191, 203, 212

Wooldridge, J. M. (2010), Econometric Analysis of Cross Section and Panel Data, The MIT
Press. 119

372


	Math Camp
	Linear Algebra
	Vectors
	Vector spaces
	Euclidean space
	Matrices
	Addition of matrices
	Scalar multiplication
	Subtraction of matrices

	Other operations with matrices
	Matrix multiplication
	Calculation rules for matrices

	Important special matrices
	Measures of matrices
	Trace of a matrix
	Rank of a matrix
	Determinants

	Matrix inversion
	Euclidean subspaces
	Matrices and linear mappings
	Matrix representation of linear systems of equations
	(Semi-)definite matrices
	Calculation rules for the derivative of vector-valued functions
	Partitioned matrices

	Fundamentals of Probability Theory
	Important basic concepts
	Why do we need probability theory?
	Probability space
	Random variables
	Distribution and density functions
	Univariate distribution and density functions
	Multivariate distribution and density functions

	Conditional probabilities
	Expected values and moments
	Conditional expected values and moments
	Important probability distributions
	Normal distribution
	2-, t-, F-distribution
	Supplement: Change of variables


	Convergence and limits
	Convergence of sequences
	Convergence of functions
	Almost sure convergence
	Convergence in probability
	Convergence in distribution
	Example of sliding hills: convergence in probability  Almost sure convergence


	Econometric Methods
	Introduction
	Statements about causal relationships
	What is Econometrics?
	Components of an empirical analysis

	Fundamentals of Estimation and Test Theory
	Samples and data-generating processes
	Econometric Models
	Regression models
	Relevant properties of estimators
	Tools for asymptotic analysis
	Law of Large Numbers (LLN)
	Central limit theorems

	Fundamentals of tests

	The ordinary least squares estimator: Derivation and an application
	Vector and matrix representation of the multiple linear regression model
	The OLS estimator for multiple linear regression models
	Derivation of the OLS estimator as a moment estimator
	Least squares derivation of the OLS estimator

	Empirical analysis of trade flows: part 1 — a brief overview

	The ordinary least squares estimator and its geometric interpretation
	The geometry of the OLS estimator
	Orthogonality conditions
	Orthogonal projections and their properties
	Frisch-Waugh-Lovell theorem

	Applications of the Frisch-Waugh-Lovell theorem

	Multiple Regression: Interpretation
	Parameter interpretation and functional form
	Data scaling
	Qualitative data as regressors
	Dummy variable or binary variable
	Multiple subgroups
	Interactions and dummy variables

	Models with quadratic regressors

	Statistical properties of the OLS estimator: expected value and covariance
	Unbiasedness of the OLS estimator
	Conditions for unbiasedness
	Predetermined regressors

	Consistency of the OLS estimator
	The covariance matrix of the parameter estimators
	The efficiency of unbiased OLS estimators
	Estimating the error variance
	Overspecified or misspecified linear regression models

	Model specification
	Model selection criteria
	Tests for non-nested models
	Empirical analysis of trade flows: Part 2

	(Asymptotic) distribution of the OLS estimator and tests
	Exact distribution of the OLS estimator
	Asymptotic distribution of the OLS estimator
	Exact tests
	t-tests: Testing a single restriction
	F-tests: Testing multiple restrictions

	Asymptotic tests
	Asymptotic t-test
	Asymptotic F-test

	Monte Carlo tests and bootstrap tests
	Monte Carlo tests
	Bootstrap tests

	Confidence intervals and ellipsoids
	Confidence intervals
	Confidence ellipsoids

	Empirical analysis of trade flows: Part 3

	Univariate time series models
	Stochastic processes
	Linear stochastic processes and MA processes
	AR processes
	AR(1) processes
	Complex numbers
	AR(p) processes and more
	OLS estimator for AR(p) models

	Estimation of first and second moments in the case of stationary processes
	Estimating the mean
	Estimating the autocovariance function
	Estimating the autocorrelation function


	Models for multivariate time series
	Multivariate data generating processes
	Dynamic econometric models
	Conditions on exogenous variables
	Dynamic linear regression models
	OLS estimation of dynamic linear regression models

	Generalized least squares estimator and its applications
	Generalized least squares estimator
	Feasible GLS
	Modelling of heteroscedastic errors
	Models with autocorrelated errors

	Heteroscedasticity-robust standard errors
	Empirical analysis of trade flows: Part 4

	Model checking
	Tests for autocorrelation
	Tests for heteroscedastic errors
	Breusch-Pagan test
	White test

	RESET test
	Normality test: Lomnicki-Jarque-Bera test
	Stability tests
	Summary of an econometric modelling process
	Empirical analysis of trade flows: Part 5

	R Programs
	R programs for Graphs in Section 2.5 to Distribution and Density Functions
	R Programs for Monte Carlo Simulation in the Section 5.5.1 concerning the Law of Large Numbers
	R Programs for Graphs in the Section 5.6 on Basics of Tests
	R Program for an Empirical Example about Trade Flows, starting in Section 6.3
	R Program for Graphs in Section 7.1 The Geometry of the LS Estimator
	R Program for Regression Results in Section 8.3 on Qualitative Data as Regressors
	R Program for Graphs in Section 9.1 on Unbiasedness of the LS Estimator
	R Program for Monte Carlo Simulation in the Section 9.2 on Consistency of the LS Estimator
	R Program for the Representation of ifo Business Climate Time Series in the Section 12 on Univariate Time Series Models
	R Program for the Representation of different Realisations of Time Series in Section 12.1 on Stochastic Processes
	R Program for Monte Carlo Simulation in Section 12.2 on Linear Stochastic Processes and MA Processes
	R Program for Monte Carlo Simulation in Section 12.3.1 on AR(1) Processes
	R Program for Monte Carlo Simulation in Section 12.3.3 on AR(p) Processes and more
	R Program for Estimating the Autocorrelation Function in Section 12.4 on Estimating First and Second Moments in the Case of Stationary Processes
	R Program for the Simulation and Estimation of AR(1) Processes in Section 13.5 on LS Estimation of Dynamic Linear Regression Models

	R Commands for Regression Analysis
	Overview of Available Commands
	Own R Packages

	Data for Estimation of the Gravity Equation
	Basic concepts of sets


