Direkt zum Inhalt


Universität Regensburg

21

Mandl S., Maiwald, B., Adlmanninger E., Birke R., Schlee S., Pruška A., Bittner P., Zenobi R., Soykan T., Beliu G., Broichhagen J., Hupfeld A. 

SNAPpa: A Photoactivatable SNAP-tag for the Spatiotemporal Control of Protein Labeling

JACS Au 2025, accepted

https://doi.org/10.1021/jacsau.5c00603 (externer Link, öffnet neues Fenster)

20

Lahmy* R., Hiefinger* C., Zeqiri* F., Hupfeld E., Mandl S., Stockerl W., Gschwind R.M., König B., Hupfeld A. 

Alternative Mechanism of Enzymatic Photocontrol by Azobenzene

ACS Catal. 2025, 15, 12944–12958

https://doi.org/10.1021/acscatal.5c04126 (externer Link, öffnet neues Fenster)

19

Wieland M., Luizaga J., Duran C., Germscheid B., Rein J., Bruckmann A., Hiefinger C., Osuna S., Hupfeld A.
Reversible Substrate-Specific Photocontrol of the Chemotherapeutic Asparaginase(-Glutaminase) from Escherichia coli

ACS Catal. 2025, 15, 8462-8478
https://doi.org/10.1021/acscatal.5c01608 (externer Link, öffnet neues Fenster)

18

Kneuttinger A.

Mit Licht Proteinaktivität steuern: die Methode der nächsten Generation

BioSpektrum 2023, 29, 815

https://doi.org/10.1007/s12268-023-2049-x (externer Link, öffnet neues Fenster)

17

Hiefinger* C., Mandl* S., Wieland* M., Kneuttinger A.

Chapter Eight - Rational design, production and in vitro analysis of photoxenoproteins
In Methods in Enzymology: Integrated Methods in Protein Biochemistry: PartC edited by A. K. Shukla, 2023, 247-288 
https://doi.org/10.1016/bs.mie.2022.12.003 (externer Link, öffnet neues Fenster)

16

Kneuttinger A.C.

A guide to designing photocontrol in proteins: methods, strategies and applications.
Biol. Chem. 2022, 403, 573-613
https://doi.org/10.1515/hsz-2021-0417 (externer Link, öffnet neues Fenster)

15

Kneuttinger A.C., Sterner R.

The Structure of Carbamoylphosphate Synthetase Unravels Central Functional Features of a Key Metabolic Multienzyme Complex.
Biochemistry 2021, 60, 3422–3423
https://doi.org/10.1021/acs.biochem.1c00280 (externer Link, öffnet neues Fenster)

14

Wurm J.P., Sung S., Kneuttinger A.C., Hupfeld E., Sterner E., Wilmanns M., Sprangers R.
Molecular basis for the allosteric activation mechanism of the heterodimeric imidazole glycerol phosphate synthase complex.

Nat. Commun. 2021, 12, 2748
https://doi.org/10.1038/s41467-021-22968-6 (externer Link, öffnet neues Fenster)

13

Simeth* N.A., Kinateder* T., Rajendran C., Nazet J., Merkl R., Sterner R., König B., Kneuttinger A.C.

Towards Photochromic Azobenzene-Based Inhibitors for Tryptophan Synthase.
Chem. - Eur. J. 2021, 27, 2439–2451
https://doi.org/10.1002/chem.202004061 (externer Link, öffnet neues Fenster)

12

Kneuttinger A.C., Rajendran C., Simeth N.A., Bruckmann A., König B., Sterner R.

Significance of the protein interface configuration for allostery in imidazole glycerol phosphate synthase.
Biochemistry 2020, 59, 2729–2742
https://doi.org/10.1021/acs.biochem.0c00332 (externer Link, öffnet neues Fenster)

11

Kneuttinger A.C., Zwisele S., Straub K., Bruckmann A., Busch F., Kinateder T., Gaim B., Wysocki VH., Merkl R., Sterner R.

Light-regulation of tryptophan synthase by combining protein design and enzymology.

Int. J. Mol. Sci. 2019, 20, E5106
https://doi.org/10.3390/ijms20205106 (externer Link, öffnet neues Fenster)

10

Kneuttinger A.C., Straub K., Bittner P., Simeth N.A., Bruckmann A., Busch F., Rajendran C., Hupfeld E., Wysocki V.H., Horinek D., König B., Merkl R., Sterner R. 
Light regulation of enzyme allostery through photo-responsive unnatural amino acids.

Cell Chem. Biol. 2019, 26, 1501–1514
https://doi.org/10.1016/j.chembiol.2019.08.006 (externer Link, öffnet neues Fenster)

9

Kneuttinger A.C., Winter M., Simeth N.A., Heyn K., Merkl R., König B., Sterner R.

Artificial light regulation of an allosteric bienzyme complex by a photosensitive ligand.
Chembiochem 2018, 19, 1750–1757
https://doi.org/10.1002/cbic.201800219 (externer Link, öffnet neues Fenster)

8

Simeth N.A., Kneuttinger A.C., Sterner R., König B.
Photochromic coenzyme Q derivatives: switching redox potentials with light.

Chem. Sci. 2017, 8, 6474–6483
https://doi.org/10.1039/C7SC00781G (externer Link, öffnet neues Fenster)

Ludwig-Maximilians-Universität München

7

Heidinger L., Kneuttinger A.C., Kashiwazaki G., Weber S., Carell T., Schleicher E.

Direct observation of a deoxyadenosyl radical in an active enzyme environment.
FEBS Lett. 2016, 590, 4489–4494
https://doi.org/10.1002/1873-3468.12498 (externer Link, öffnet neues Fenster)

6

Kneuttinger A.C., Kashiwazaki G., Prill S., Heil K., Müller M., Carell T.
Formation and direct repair of UV-induced dimeric DNA pyrimidine lesions.

Photochem. Photobiol. 2014, 90, 1–14
https://doi.org/10.1111/php.12197 (externer Link, öffnet neues Fenster)

5

Kneuttinger A.C., Heil K., Kashiwazaki G., Carell T.
The radical SAM enzyme spore photoproduct lyase employs a tyrosyl radical for DNA repair.

Chem. Commun. 2013, 25, 722–724
https://doi.org/10.1039/C2CC37735G (externer Link, öffnet neues Fenster)

4

Brandmayr C., Wagner M., Brückl T., Globisch D., Pearson D., Kneuttinger A.C., Reiter V., Hienzsch A., Koch S., Thoma I., Thumbs P., Michalakis S., Müller M., Biel M., Carell T.

Isotope-based analysis of modified tRNA nucleosides correlates modification density with translational efficiency.
Angew. Chem. Int. Ed. 2012, 51, 11162–11165
https://doi.org/10.1002/anie.201203769 (externer Link, öffnet neues Fenster)

3

Reiter V., Matschkal D.M., Wagner M., Globisch D., Kneuttinger A.C., Müller M., Carell T.

The CDK5 repressor CDK5RAP1 is a methylthiotransferase acting on nuclear and mitochondrial RNA.
Nucleic Acids Res. 2012, 40, 6235–6240
https://doi.org/10.1093/nar/gks240 (externer Link, öffnet neues Fenster)

2

Globisch D., Pearson D., Hienzsch A., Brückl T., Wagner M., Thoma I., Thumbs P., Reiter V., Kneuttinger A.C., Müller M., Siber S.A., Carell T.

Systems-based analysis of modified tRNA bases.
Angew. Chem. Int. Ed. 2011, 50, 9739–9742
https://doi.org/10.1002/anie.201103229 (externer Link, öffnet neues Fenster)

1

Heil, K., Kneuttinger, A.C., Schneider, S., Lischke, U., Carell, T.

Crystal structures and repair studies reveal the identity and the base-pairing properties of the UV-induced spore photoproduct DNA lesion.
Chem. - Eur. J. 2011, 17, 9651–9657
https://doi.org/10.1002/chem.201100177 (externer Link, öffnet neues Fenster)

nach oben